CONTRIBUTION DE LA WALLONIE AU PLAN NATIONAL ENERGIE CLIMAT 2030 (PNEC2030)
À remettre dans le cadre du règlement Gouvernance
(Approuvé le 28 / 11 /2019)
Table des matières

0. Préambule ... 6

1. VISION GLOBALE ET PROCESSUS D’ELABORATION DU PLAN ... 7
 1.1. Résumé opérationnel .. 7
 1.2. Panorama des politiques actuelles .. 10
 1.3. Consultations et participation .. 15

2. OBJECTIFS WALLONS .. 19
 2.1. Décarbonation ... 20
 2.1.1. Emission et absorptions de gaz à effet de serre ... 20
 2.1.2. Energie Renouvelable ... 28
 2.2. Efficacité énergétique .. 37
 2.2.1. Contribution indicative en matière d’efficacité énergétique .. 37
 2.2.2. Economies d’énergie cumulées 2021-2030, en vertu de l’article 7 de la directive « Efficacité énergétique » ... 40
 2.2.3. Objectifs indicatifs (ou jalons) de la stratégie rénovation long terme résidentielle et non résidentielle .. 42
 2.2.4. Economies d’énergie dans le bâtiment neuf .. 44
 2.2.5. Exemplarité des pouvoirs publics en vertu de l’article 5 de la directive « Efficacité Energétique » .. 45
 2.2.6. Autres objectifs sectoriels .. 47
 2.3. Marché de l’énergie .. 48
 2.3.1. Objectifs relatifs à l’adéquation du système électrique, ainsi que la flexibilité du système énergétique, en lien avec production d’énergie renouvelable .. 48
 2.3.2. Autres objectifs relatifs à la protection des consommateurs et d’amélioration de la compétitivité du secteur de la vente au détail de l’énergie .. 49
 2.3.3. Objectifs relatifs à la précarité énergétique ... 49

2.4. Recherche, innovation et compétitivité .. 51
 2.4.1. Objectifs de financement de la recherche et de l’innovation dans le secteur public et, le cas échéant, le secteur privé .. 51
 2.4.2. Le cas échéant, objectifs généraux nationaux, y compris les objectifs spécifiques sur le long terme (2050) concernant le déploiement de technologies à faibles émissions de carbone ... 55
3. POLITIQUES ET MESURES .. 56

3.1. Décarbonation .. 56
 3.1.1. Émissions de gaz à effet de serre .. 56
 3.1.2. Énergie Renouvelable ... 80

3.2. Efficacité Énergétique ... 91
 3.2.1. Système d’obligation en matière d’efficacité énergétique et mesures alternatives (art. 7 dir EE) :
 Mise en place un mécanisme d’obligation complémentaire aux mesures alternatives pour 2021-2030... 91
 3.2.2. Stratégie rénovation bâtiment Long terme (public et privé/ résidentiel et non résidentiel) 93
 3.2.3. Description des politiques et mesures visant à promouvoir l’efficacité énergétique dans le
 secteur public et des mesures visant à éliminer les obstacles règlementaires qui entravent la
 généralisation des contrats de performance énergétique et d’autres modèles de services en matière de
 l’efficacité énergétique : Développer le cadre juridique et réglementaire des ESCO et des CPE en
 Wallonie.. 110
 3.2.4. Rôle exemplaire des bâtiments publics ... 117
 3.2.5. Activer les comportements pour réduire la consommation d’énergie dans le résidentiel 118
 3.2.6. Bâtiment neuf : Promouvoir l’autonomie énergétique .. 120
 3.2.7. Autres mesures pour le secteur tertiaire .. 121
 3.2.8. Industrie non-ETS .. 122
 3.2.9. Mesures visant à mettre en place des actions en faveur de l’exploitation du potentiel d’efficacité
 énergétique des infrastructures gazières et électriques .. 125
 3.2.10. Mesures de financement (dont support EU) ... 126

3.3. Marché interne de l’énergie ... 130
 3.3.1. Adéquation du système électrique et augmentation de la flexibilité locale du système
 énergétique pour permettre notamment la maximisation de la capacité d’accueil des énergies
 renouvelables .. 130
 3.3.2. Protection du consommateur (précarité) ... 133
 3.3.3. Amélioration de la compétitivité ... 140
 3.3.4. Mesures liées au demand response, tarifs dynamiques ... 140

3.4. Recherche, Innovation, Compétitivité ... 141
 3.4.1. Politiques et mesures permettant d’atteindre les objectifs d’allocation de fonds 141
 3.4.2. Coopération avec d’autres États membres dans ce domaine, y compris des informations sur la
 manière dont les objectifs et politiques du plan SET sont transposés dans le contexte national 143
 3.4.3. Le cas échéant, mesures de financement dans ce domaine au niveau national, y compris le
 concours de l’UE et l’utilisation de fonds de l’UE .. 146

4. SITUATION ACTUELLE ET PROJECTIONS SUR BASE DES POLITIQUES ET MESURES
EXISTANTES .. 147
4.1. Evolution estimée des principaux paramètres exogènes influençant le système énergétique et les émissions de GES ..147

4.2. Décarbonation ...149
 4.2.1. Emissions de Gaz à effet de serre .. 149
 4.2.2. Energie renouvelable .. 157

4.3. Dimension Efficacité énergétique...161

4.4. Dimension Marché interne de l’énergie ...178

4.5. Recherche, innovation et compétitivité..184

5. ANALYSE D’IMPACT DES POLITIQUES ET MESURES PLANIFIEES188

5.1 Impact des politiques et mesures prévues, décrites dans la section 3 sur le système énergétique et les émissions de gaz à effet de serre (incluant la comparaison avec les projections avec mesures existantes de la section 4) ...188

5.2 Incidences macroéconomiques et, dans la mesure du possible, sanitaires,
environnementales et sociales ainsi que sur l’emploi, l’éducation et les qualifications, y compris au regard d’une transition juste et équitable des politiques et mesures planifiées203

5.3. Etat des lieux des besoins en investissements..216
0. Préambule

Ce document doit donc être considéré comme la contribution de la Wallonie à la version finale du Plan National Energie Climat de la Belgique (PNEC 2030).

Un draft de cette contribution a été approuvé le 18 décembre 2018 par le Gouvernement Wallon, et transmis à la Commission au sein du draft de Plan belge fin 2018.

Ce draft de contribution a notamment été amendé sur base des recommandations de la Commission reçues en juin 2019 et des résultats des différents processus de consultation (principalement les résultats de l’enquête publique menée en Wallonie sur le Plan Air-Climat Energie (PACE)).

Section A : Plan Wallon

1. VISION GLOBALE ET PROCESSUS D'ELABORATION DU PLAN

1.1. Résumé opérationnel

i. Contexte politique, économique, environnemental et social du plan

La Wallonie ou Région wallonne est une région fédérée à pouvoir législatif, dotée d’instances et de compétences propres au sein de l’État fédéral belge.

En matière d’énergie, la Wallonie est compétente sur son territoire pour ce qui concerne principalement la distribution et le transport local d’électricité, la distribution publique du gaz, les réseaux de distribution de la chaleur, les sources nouvelles d’énergie renouvelable (à l’exception de celles relatives au nucléaire) et l'utilisation rationnelle de l'énergie (URE). Quant à l’État fédéral, il reste compétent pour les matières dont l'indivisibilité technique et économique requiert une mise en œuvre homogène sur le plan national, tel que le plan national d’équipement du secteur de l’électricité, le transport et la production d’énergie, les tarifs ou les normes de produits.

En matière de transport et de mobilité, la Wallonie est compétente pour les infrastructures routières, fluviales, la sécurité routière et la mobilité. L’Etat fédéral est compétent pour le transport ferroviaire.

La thématique des changements climatiques est transversale et dépasse le cadre de l’énergie ou de l’environnement au sens strict. Elle est intégrée dans les politiques du transport, de la fiscalité, de l’énergie, de l’agriculture, etc. Il en résulte des compétences imbriquées entre les différents niveaux de pouvoir, tant intra-wallonne que nationale. Cette répartition complexe impose dès lors des structures de coordination étroite entre les différentes autorités responsables.

Le Plan wallon Energie-Climat vise à formaliser les engagements de la Wallonie dans le cadre de l’adoption d’un plan national. L’ensemble des politiques et mesures (PAMs) proposées dans ce document sont principalement liées aux compétences régionales. Néanmoins, aux vues des nombreuses interactions entre les différents niveaux de pouvoirs à l’échelle nationale, la mise en œuvre d’un grand nombre de PAMs régionales doit faire l’objet d’un travail collaboratif avec les autres entités du pays, dont l’Etat fédéral.
ii. Tableau des objectifs clés, politiques et mesures du plan wallon

<table>
<thead>
<tr>
<th>Thématiques</th>
<th>Objectifs 2030</th>
<th>Mesures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décarbonation</td>
<td>-37% (*) GES non-ETS par rapport à 2005</td>
<td>Vision FAST et Stratégie Régionale de Mobilité</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verdissement du parc de véhicules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renforcement des politiques dans le secteur de l’agriculture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accords volontaires Gaz fluorés</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Décarbonation Industrie non-ETS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stratégie de rénovation des bâtiments et performance énergétique des bâtiments neufs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaleur verte</td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>23,5 % (*) de la consommation finale brute d’énergie en 2030</td>
<td>Maintien d’un système de soutien à l’électricité verte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soutien à la production de chaleur verte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilisation de renouvelable dans le transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suppression des barrières administratives et réglementaires</td>
</tr>
<tr>
<td>Efficacité Energétique</td>
<td>23% de la consommation finale par rapport à 2005</td>
<td>Agence pour les ESCOs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stratégie de rénovation des bâtiments</td>
</tr>
<tr>
<td></td>
<td>36% (**) de la consommation primaire par rapport à 2005</td>
<td>Renforcement des exigences dans le bâtiment neuf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transport/mobilité</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrie ETS et non-ETS</td>
</tr>
<tr>
<td>Intégration du marché</td>
<td></td>
<td>Augmentation de la flexibilité locale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintien des mesures relatives à la protection des consommateurs</td>
</tr>
<tr>
<td>Recherche, Innovation</td>
<td>Budget public de 110.000.000(*** €/an affecté à la thématique énergie-climat</td>
<td>• Budget wallon : 75.000.000 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Budget issu des programmes européens : 20.000.000 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Budget issu du Fonds Innovation : 10.000.000 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Budget issu des fonds structurels : 5.000.000 €</td>
</tr>
</tbody>
</table>

Tableau 1: Objectifs et politiques et mesures principales du Plan wallon
(*) la réduction des émissions et la part de renouvelable sont établis sur base d’un taux d’incorporation des biocarburants de 14% réel (ce pourcentage est de la responsabilité du Gouvernement fédéral). Il est utilisé dans ce plan pour permettre une compilation nationale des objectifs de chaque région. Si ce pourcentage devait être renégocié à la baisse, le passage par exemple à 10% conduirait à réduire la part de source d’énergie renouvelable de 23.5% à 22.82%)

(**) La consommation primaire est dépendante du parc de production d’électricité. L’effort repris ici suppose la sortie du nucléaire selon le calendrier prévu à ce jour, l’installations de nouvelles centrales gaz et des importations wallonnes limitées à 1.600 GWh.

(***) les budgets supplémentaires pour arriver à allouer 75 millions d’euros par an du budget wallon à la thématique énergie/climat proviendront d’autres ressources affectées à la thématique énergie - climat, étant entendu que les autres secteurs de la recherche et de l’innovation qui travaillent sur d’autres thématiques ne doivent pas voir leurs moyens réduits.
1.2. Panorama des politiques actuelles

i. Contexte politique du plan et du système énergétique wallon

Répartition des compétences

La Wallonie ou Région wallonne est une région fédérée à pouvoir législatif, dotée d’instances et de compétences propres au sein de l’État fédéral belge.

La Wallonie est compétente sur son territoire pour ce qui concerne :

- la distribution et le transport local d’électricité au moyen de réseaux dont la tension nominale est inférieure ou égale à 70.000 volts
- la distribution publique du gaz
- les réseaux de distribution de la chaleur à distance
- les sources nouvelles d’énergie (à l’exception de celles relatives au nucléaire)
- la récupération d’énergie
- l’utilisation rationnelle de l’énergie (URE)
- l’utilisation du grisou, du gaz de hauts fourneaux et la valorisation des terrils

L’État fédéral est compétent pour les matières dont l’indivisibilité technique et économique requiert une mise en œuvre homogène sur le plan national, à savoir :

- le plan national d’équipement du secteur de l’électricité
- le cycle du combustible nucléaire
- les grandes infrastructures de stockage
- le transport et la production d’énergie
- les tarifs & les normes de produits (critères que doivent respecter certains produits pour être mis sur le marché)

La thématique des changements climatiques est transversale et dépasse le cadre de l’énergie ou de l’environnement au sens strict. Elle est intégrée dans les politiques du transport, de la fiscalité, de l’énergie, etc. Il en résulte des compétences imbriquées entre les différents niveaux de pouvoir, tant intra-wallonne que nationale. Cette répartition complexe impose dès lors des structures de coordination étroite entre les différentes autorités responsables.

Le Plan wallon Energie-Climat vise à formaliser les engagements de la Wallonie dans le cadre de l’adoption d’un plan national. L’ensemble des politiques et mesures (PAMs) proposées dans ce document sont principalement liées aux compétences régionales. Néanmoins, aux vues des nombreuses interactions entre les différents niveaux de pouvoirs à l’échelle nationale, la mise en œuvre d’un grand nombre de PAMs régionales ne sera possible que si des mesures complémentaires sont prises par le niveau fédéral.
Coordination nationale

Pacte énergétique :

Structures nationales de coordination :

La répartition des compétences sur les matières énergétiques nécessite la coopération et la concertation entre les régions et l’Etat fédéral. Cette concertation a été formalisée dans l’accord de coopération sur la coordination des activités liées à l’énergie qui a été signé le 18 décembre 1991 par l’Etat, la Région wallonne, la Région flamande et la Région de Bruxelles-Capitale. Cette concertation a abouti à la création de CONCERE (ENOVER en néerlandais).

Le groupe CONCERE plénier assure les missions suivantes (https://economie.fgov.be/fr/publications/concere-la-concertation-entre) :

- organiser la concertation entre l’Etat et les régions ;
- préserver la cohérence interne des mesures de politique énergétique des autorités compétentes ;
- centraliser l’information sur l’adaptation de la législation touchant aux matières concernées ;
- promouvoir les échanges d’information entre les autorités compétentes ;
- recueillir les données destinées à répondre aux demandes d’information émanant des organisations internationales et élaborer les bilans énergétiques ;
- composer la délégation belge auprès des organisations internationales ;
- élaborer des positions coordonnées, étayées et ciblées à prendre par la délégation belge dans les instances internationales et plus particulièrement au sein du Conseil de l’UE (par exemple la préparation des directives européennes).

Les principales tâches de la CNC se situent dans les domaines précités. Il s’agit entre autres des tâches suivantes :

11
• l’approbation des rapports officiels en vertu de la CCNUCC, du protocole de Kyoto, de la décision 280/2004/CE (remplacée depuis par le règlement (UE) n°525/2013) et de la directive 2003/87/CE (ETS) ;
• l’évaluation de la coordination et la coopération fédérales et interrégionales, ainsi que le niveau d’exécution et l’impact (écologique, social et économique) des politiques et mesures prises sur la base du Plan national Climat ;
• conseiller le Comité de coordination de la Politique Internationale de l’Environnement (CCPIE) et la Commission Interdépartementale pour le Développement Durable (CIDD) ;
• la nomination des experts belges au Roster of experts (RoE) de la CCNUCC, experts chargés de participer aux examens des rapports des autres États Parties ;
• l’approbation d’activités de projet en sa qualité d’autorité nationale désignée (DNA) pour les projets MDP et de point focal (FP) pour les projets MOC.

Un groupe de travail spécifique CONCERE - CNC PNEC 2030 a été mis en place, en 2017, afin de coordonner le travail entre entités dans le but d’aboutir à un plan national Energie-Climat 2030.

Partage des objectifs 2020

• les émissions de gaz à effet de serre des secteurs non couverts par le système communautaire d’échange de droits d’émission (les secteurs « non-ETS »)
• le déploiement des énergies renouvelables
• le partage des revenus de la mise aux enchères des quotas
• le financement international

PNEC 2030

Au niveau européen, cet objectif se décline :

• en un objectif de ~43% par rapport à 2005 en 2030 pour le secteur soumis à la directive Emission Trading Scheme (ETS) (2003/87/CE), soit le marché du carbone européen ;
et de -30% par rapport à 2005 en 2030 pour les autres secteurs (non-ETS comme le transport, le bâtiment, etc.). Il s’agit de l’Effort Sharing Regulation (ESR 2018/842/CE). Dans ce cadre, l’objectif pour la Belgique est de -35% par rapport à 2005 en 2030. Parallèlement, le règlement LULUCF\(^1\) (2018/841/CE) définit les règles de comptabilisation des missions et absorptions liées à l’utilisation des terres, au changement d’affectation des terres et à la forsterie. Les flexibilités entre ce règlement et le règlement ESR sont précisées à l’article 7 du règlement ESR.

En outre, les nouvelle Directives Efficacité Énergétique et Energies Renouvelables et le Règlement Gouvernance comprennent notamment de nouveaux objectifs européens pour 2030 :

- une part d’au moins 32 % d’énergie renouvelable (objectif contraignant) ;
- une amélioration jusqu’au moins 32,5 % de l’efficacité énergétique\(^2\);

La politique énergie-climat en Wallonie

Travaux parlementaires

Le 19 février 2014, le Parlement wallon a adopté le décret « Climat ». Ce décret a pour objet d’instaurer des objectifs en matière de réduction des émissions de gaz à effet de serre à court, moyen et long termes, et de mettre en place les instruments de suivi. Il prévoit notamment l’élaboration de « budgets » d’émission par période de 5 ans. Les objectifs fixés par ce décret sont les suivants :

- Une réduction de 30% des émissions de gaz à effet de serre par rapport à 1990 en 2020 ;
- Une réduction de 80 à 95% des émissions de gaz à effet de serre par rapport à 1990 en 2050.

Afin d’atteindre ces objectifs, le texte prévoit que Gouvernement établira, tous les cinq ans, un Plan Air-Climat-Energie (PACE) qui rassemblera toutes les mesures à adopter pour respecter les budgets d’émission.

Le 23 novembre 2016, le Parlement wallon a adopté le décret portant assentiment à l’Accord de Paris, adopté le 12 décembre 2015. Par la suite, les travaux parlementaires se sont poursuivis. Ainsi, le 28 septembre 2017, le Parlement wallon a adopté une résolution relative à la mise en œuvre d’une politique wallonne du climat, démontrant la volonté wallonne de mettre sur pied une politique climatique à long terme, cohérente avec celles des autres entités belges. Le

\(^1\) Land-use, Land Use Change and Forestry

\(^2\) Consommation d’énergie primaire par rapport à la baseline PRIMES 2007

Plans Air Climat Energie

La Wallonie actualise sa politique climatique à travers le Plan Air-Climat-Energie (PACE).

Selon la procédure décrite dans le décret, le Plan Air Climat Energie s’inscrit dans un processus dynamique qui prévoit un rapport annuel au Gouvernement et au Parlement ce qui permet de l’adapter, le cas échéant, soit pour tenir compte des retours d’expérience, soit pour tenir compte des futures évolutions de la législation.

PACE 2016-2022

PACE 2021-2030

Les processus liés à la mise en œuvre du règlement Gouvernance du Clean Energy Package et de la directive relative à la qualité de l’air présentent de nombreuses interactions.

Le projet de PACE 2021-2030 a été adopté par le Gouvernement wallon le 4 avril 2019.

ii. Politiques et mesures existantes en énergie et climat dans les 5 dimensions de l’Union de l’Energie

En matière de décarbonation, d’efficacité énergétique et de promotion des énergies renouvelables, les principales mesures existantes sont inventoriées dans le Plan Air Climat Energie 2016-2022 (PACE 2022). Le PACE 2022 contient 142 mesures réparties par secteurs pour réduire les émissions de gaz à effet de serre et autres polluants atmosphériques, améliorer la qualité de l’air et s’adapter aux impacts des changements climatiques.

iii. Structure administrative d’implémentation des politiques énergétiques et climatiques

Pour rédiger le projet de PACE 2030, le COPIL a disposé des éléments suivants :

- Le travail interne au Département de l’Energie et de l’AwAC qui dispose notamment d’experts sectoriels ;
- La constitution de groupe de travail thématique, incluant les autres administrations (transports, industries, …) ;

1.3. Consultations et participation

i. Implication du Parlement

La Résolution Climat, votée le 28 septembre 2017 par la Parlement wallon, demande au Gouvernement de mener une politique ambitieuse en matière de

climat en recommandant une série de mesures concernant les énergies renouvelables, l'efficacité énergétique, le logement, la mobilité, l'agriculture, etc. Dans le cadre de cette résolution, le Ministre de l’Énergie s’est engagé à présenter un suivi des différentes dispositions contenues dans la résolution de façon trimestrielle. En effet, cet exercice dynamique n’était pas prévu dans la résolution.

Une première réunion de suivi a eu lieu le 12 janvier 2018 en présence de 4 représentants parlementaires et a présenté les avancées en termes de politique climatique.

ii. Implication des autorités locales et régionales

Au niveau de la Wallonie, l’enquête publique réalisée dans le cadre du PACE a permis un large processus de consultation des autorités de tous niveaux de pouvoirs confondus. Les autorités locales seront également impliquées dans la mise en œuvre des mesures.

iii. Consultations avec les stakeholders, incluant les partenaires sociaux, et implication de la société civile

1ère consultation

Dans le cadre de l’élaboration du PACE 2030, une première phase de consultation écrite a eu lieu du 13 mars 2017 au 21 avril 2017 et avait pour objectif, sur base d’un état des lieux des politiques existantes, de susciter les réactions et de permettre aux différentes parties prenantes d'exposer aux autorités compétentes wallonnes leurs visions sur la politique wallonne actuelle en matière d'énergie et de climat et sur la manière dont devrait évoluer, selon elles, le système énergétique à l'horizon 2030. Ces contributions (une quarantaine de réponses) ont été analysées et ont permis de dégager certaines pistes d’amélioration de mesures existantes et de nouvelles mesures à prendre.

Les documents présentés avaient pour objet de brosser un tableau synthétique des différents outils et leviers en place dans le cadre de la politique énergétique et climatique en Wallonie. Ils constituaient une base de réflexion sur les actions en cours et les pistes à privilégier afin d'atteindre l'objectif de diminution des émissions de gaz à effet de serre de -35% d'ici à 2030 en Belgique et en Wallonie. Il a été demandé aux stakeholders de répondre à un questionnaire par thématique.

2ème consultation

Une seconde phase de consultation s’est déroulée du 19 février au 19 mars 2018. La consultation écrite a permis aux stakeholders de se positionner sur les propositions de l'Administration. Lors d’un événement associé (22 et 23 février), les administrations ont présenté ces mesures et discuté avec les partenaires socio-économiques, dans un esprit constructif, avant l'adoption par le Gouvernement du nouveau Plan Air Climat Energie 2030.
Un focus a été réalisé sur la présentation des propositions de nouvelles mesures à mettre en œuvre entre 2020 et 2030.

Les principales thématiques, abordées lors de ces consultations, sont liées à l’objectif non-ETS et portent essentiellement sur l’énergie renouvelable, l’efficacité énergétique, l’industrie (non-ETS, y compris HFC), le transport et la mobilité et l’agriculture.

Enquête publique sur le PACE

Au terme des phases de consultation, le Gouvernement wallon s’est prononcé sur un projet de PACE 2030. Conformément à l’article D.29-1, du Livre Ier, du Code de l’Environnement, la Wallonie a soumis à enquête publique le projet de PACE 2030 ainsi que les documents associés audit projet. Ce projet de PACE est une synthèse des mesures intégrées dans le projet de Plan wallon Energie-Climat 2030 et dans le Plan Air, eux-mêmes destinés à répondre à nos obligations européennes.

Au terme de l’enquête publique, le Gouvernement devra examiner une seconde version du PACE qui aura intégré les résultats de l’enquête. Ces éléments corrigés seront également repris dans le présent Plan Wallon Energie Climat (PWEC 2030).

L’enquête publique s’est clôturée en août 2019. A l’issue de celle-ci, des contributions ont été reçues de la part de :
- 23 organismes
- 62 citoyens
- 21 communes

Consultation publique sur le Plan National Energie Climat (PNEC)

Le projet de Plan National Energie Climat et ses annexes par entité a également été soumis au grand public et à la société civile à travers un processus de consultation au niveau belge. Les résultats sont disponibles sur le site dédié :
https://www.plannationalenergieclimat.be/fr

iv. Consultation avec les autres états membres

Les défis communs, pour les Etats membres, sont nombreux, sur l’ensemble des dimensions décrites dans ce plan.

En ce qui concerne la Région wallonne (et en s’inscrivant dans les compétences régionales), on peut noter un grand intérêt pour le travail avec les pays et régions

transfrontaliers Nord-Rhénanie Westphalie, Rhénanie-Palatinat, Sarre, Lorraine, Luxembourg, ...

De manière structurelle, on peut noter la participation aux instances de la Grande Régions ou encore la signature d’une Déclaration d’intention entre le Gouvernement wallon et le Gouvernement régional de Rhénanie-du-Nord-Westphalie dont la transition énergétique est l’une des thématiques dans l’objectif d’assurer à l’avenir un approvisionnement énergétique, sûr, abordables et respectueux du climat.

Et, en particulier les thématiques suivantes :

- La bioénergie

En effet, les pays et régions frontalières constituent avec la Région wallonne un bassin d’approvisionnement unique en biomasse (forestière en particulier). Dans ce contexte, des niveaux de soutien de hauteur très différents pourraient créer des distorsions sur les marchés voisins ou sur le marché wallon alors que l’on sait qu’il existe déjà énormément de tensions entre les différents utilisateurs potentiels des résidus et co-produits de la biomasse

- La mobilité électrique

Le déploiement de la mobilité électrique nécessite une continuité et une interopérabilité des infrastructures. Ce déploiement est soutenu par l’UE notamment grâce à la Directive 2014/94 mais une concertation au niveau plus frontalier pourrait bénéficier à l’ensemble des zones concernées.

v. Processus itératif avec la Commission

2. OBJECTIFS WALLONS

<table>
<thead>
<tr>
<th></th>
<th>2008-2012</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Et -30%/2005 (non-ETS)</td>
<td></td>
</tr>
<tr>
<td>EnR :</td>
<td>20%</td>
<td>consommation finale</td>
<td>EnR : 32% consommation finale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>brute d’énergie</td>
<td>brute d’énergie</td>
<td></td>
</tr>
<tr>
<td>EE :</td>
<td>-20%</td>
<td>consommation énergie</td>
<td>EE : 32.5% d’efficacité énergétique (consommation primaire et/ou finale)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>primaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(objectifs assignés par l’Europe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GES :</td>
<td>7,5%/1990</td>
<td>GES : -15% non-ETS/2005</td>
<td>GES : -35% non-ETS/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnR :</td>
<td>13%</td>
<td>consommation d’énergie</td>
<td>EnR :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>finale brute</td>
<td>Objectif indicatif</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Augmentation d’1 3 point de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pourcentage de chaleur renouvelable/an</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Objectif Contraignant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-14% de la consommation finale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>du transport est d’origine</td>
<td></td>
</tr>
<tr>
<td>EE : 18% (en 2030 par rapport à la baseline PRIMES 2007)</td>
<td></td>
<td>EE :</td>
<td>Objectifs Contraignants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 0.8% de diminution de la</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>consommation finale/an</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 3% de taux de rénovation des</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bâtiments gouvernementaux</td>
<td></td>
</tr>
<tr>
<td>Wallonie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(décret climat), -14,7%/2005 pour le non ETS (burden-sharing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnR :</td>
<td>13%</td>
<td>consommation d’énergie</td>
<td>EnR :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>finale brute</td>
<td>Objectifs Contraignants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(burden-sharing : 14.850 GWh)</td>
<td>- 23,5% consommation finale brute d’énergie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2 : Objectifs européen, belge et wallon
2.1. Décarbonation

2.1.1. Emission et absorptions de gaz à effet de serre

i. **Objectif GES et lien avec l’ESR**

Le cadre contient l’objectif contraignant de réduire, d’ici à 2030, les émissions de l’UE d’au moins 40 % par rapport aux niveaux de 1990. Conformément à la proposition de la Commission, le Conseil européen a décidé de répartir comme suit l’objectif européen en matière de réduction des émissions de gaz à effet de serre à l’horizon 2030 :

- Secteurs relevant de l’ETS: -43 % (par rapport à 2005).

Dans le cadre de l’ESR (secteurs non-ETS), la Belgique doit réduire ses émissions de GES de -35% à l’horizon 2030 par rapport à 2005.

Le graphique suivant montre, pour la Wallonie, la comparaison entre les inventaires d’émissions de GES en 2005 et 2015, et les deux scénarios de projections avec politiques inchangées (WEM) et avec la mise en œuvre des politiques (WAM) présentées au chapitre 3.

Figure 1 : Evolution des émissions de GES en Wallonie pour les secteurs non-ETS

Il y a lieu de constater que la somme des effets projetés des nouvelles politiques et mesures permettrait de réduire de l’ordre de -37% les émissions des secteurs non-ETS par rapport à 2005 (contre -24.5 % à politiques inchangés).

Ce chiffre de -37% intègre un taux d’incorporation de 14% de biocarburant en 2030 selon une trajectoire précisée dans le Plan National Energie Climat. Les discussions nationales pourraient faire évoluer ce chiffre.

Il faut noter que la trajectoire ESR de 2030 se calcule en appliquant une correction liée aux modifications du périmètre ETS survenues depuis 2005 : certaines entreprises ont été incluses dans le système ETS entre les périodes 2008-2012 et 2013-2020 et leurs émissions doivent donc être exclues de la trajectoire ESR. En effet, le changement de périmètre n’ayant été effectif qu’à partir de 2013, les émissions de 2005 rapportées dans l’inventaire incluent des entreprises qui sont depuis lors comptabilisées dans le système ETS. Une correction est donc nécessaire, qui est réalisée selon des règles européennes. Une correction du même type avait été effectuée pour la période 2013-2020 : réduction de 14,7% appliquée aux données de 2005, en enlevant ensuite de cette trajectoire les émissions transférées dans l’ETS. Pour cette raison, la trajectoire de 2020 correspond à une réduction apparente de -18,46% par rapport aux émissions non-ETS telles que rapportées pour l’année 2005. La trajectoire globale 2030 reprises en pourcentage dans le présent plan tient compte de cette correction.

ii. Engagements dans le cadre LULUCF

Le Règlement LULUCF 2018/841, adopté par le Parlement européen le 17 avril 2018, rend obligatoire la comptabilisation de plusieurs sous-secteurs tels que boisement, déboisement, gestion des terres forestières, des terres agricoles et de prairie et carbone stocké dans les produits du bois récoltés. La comptabilisation se fait selon des règles spécifiques pour chaque sous-secteur. Pour la gestion forestière, qui est le puits de carbone le plus important en Région wallonne, la comptabilisation se fait par différence par rapport à un niveau de référence, qui représente une projection de type BAU à l’horizon 2030.

La règle imposée au secteur est de ne pas être une source nette d’émission (no-debit rule). Si la somme de ces secteurs amène un puits net de carbone, celui-ci pourra être utilisé pour compenser des émissions ESR, avec un plafond d’utilisation. Si au contraire la somme de ces secteurs amène une émission nette, cette dernière pourrait être partiellement compensée au sein du secteur. Au-delà, des AEA6 provenant de l’ESR ou d’achats externes devront être utilisés pour compenser les émissions.

6 AEA : Annual Emission Allocation (Plafond d’émissions annuel - unités d’émission provenant de la quantité annuelle allouée selon les trajectoires définies par le règlement ESR)
La Belgique a soumis début 2019 son plan de comptabilisation forestière (NFAP - National Forestry Accounting Plan), qui précise le niveau de référence de la gestion forestière (Forest Reference Level). Ce rapport a fait l'objet d'un processus de vérification mutuelle entre États membres en avril 2019, suite auquel la Commission Européenne a formulé des recommandations techniques. La version révisée du NFAP est en préparation et sera soumise le 31 décembre 2019.

Conformément au règlement LULUCF, le niveau de référence (FRL) est basé sur la gestion forestière observée durant la période 2000-2009 et ne prend pas en compte les tendances actuelles de changement d'espèce. Selon les données actuellement disponibles, un scénario alternatif prenant en compte ces changements d'espèces, en particulier le remplacement progressif de l’épicéa par le sapin de Douglas, amènerait un puits légèrement plus élevé durant la période 2021-2030, dans la mesure où le Douglas est plus productif. Si cette tendance se confirme, la comptabilisation de la gestion forestière par rapport au niveau de référence pourrait constituer un puits net, de l’ordre de 105 kt CO₂ par an. Cette projection est cependant entachée d’une large incertitude, notamment dans la mesure où environ la moitié de la forêt wallonne appartient à des propriétaires privés dont la gestion peut être guidée par divers facteurs.

D’autre part, le bilan boisement/déboisement représente actuellement une source nette d’émission, de 308 kt CO₂ en 2017 et la gestion des terres de cultures et de prairies, selon les règles de comptabilisation, apparaît également comme une source d’émission, de l’ordre de 89 kt CO₂/an pour les années 2013 à 2016. Ces estimations sont à confirmer, dans la mesure ou la matrice de changement d’affectation des terres est en cours d’actualisation et pourrait modifier ces chiffres. Aucune projection de l’affectation des terres à l’horizon 2030 n’est par ailleurs disponible.

Vu ces révisions méthodologiques en cours et le niveau d’incertitude élevé concernant l’évolution d’ici 2030, tant au niveau de la gestion forestière que de l’utilisation des terres, il n’est actuellement pas possible de déterminer si le secteur sera comptabilisé en 2021-2030 comme un puits de carbone ou une source nette selon les règles du règlement LULUCF, même si plusieurs mesures visent à favoriser le maintien ou l’augmentation des stocks de carbone (voir section 3.1.1.i).

Compte tenu de ces éléments, la Wallonie pose donc l’hypothèse d’un simple respect de la règle de non-débit et d’une neutralité du secteur LULUCF, sans recours aux mécanismes de flexibilité entre LULUCF et ESR.

iii. **Objectifs spécifiques pour le transport**

Évolution et répartition de la demande

Le Gouvernement wallon a fixé des objectifs ambitieux en matière de mobilité. Ceux-ci sont exprimés à travers la vision FAST notamment en termes de km parcourus par mode pour le transport de personnes et de tonnes*km pour les marchandises. Les tableaux suivants rappellent ces objectifs de répartition par kilomètres parcourus par mode.

En ce qui concerne les personnes km parcourus par mode :

<table>
<thead>
<tr>
<th>Mode</th>
<th>2017</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marche</td>
<td>3 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Vélo</td>
<td>1 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Bus</td>
<td>4 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Train</td>
<td>9 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Voiture</td>
<td>83 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Charge moyenne par voiture</td>
<td>1,3 personne</td>
<td>1,8 personne</td>
</tr>
</tbody>
</table>

Tableau 3 : Répartition km parcourus par mode

Le tableau tient en compte une réduction de 5% de la demande en déplacement de personnes.

Cette vision pourra également intégrer d'autres modes de transport en voie de progression, comme par exemple les deux roues motorisées circulant à plus de 25 km/h (cyclomoteurs, speedpedelec) ou encore les trottinettes électriques.

En ce qui concerne la mobilité des marchandises (en tonnes*km) :

<table>
<thead>
<tr>
<th>Mode</th>
<th>2017</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>4 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Eau</td>
<td>14 %</td>
<td>18 %</td>
</tr>
<tr>
<td>Route</td>
<td>82 %</td>
<td>75 %</td>
</tr>
</tbody>
</table>

*Tableau 4 Répartition tonnes*km marchandises*
Ces ambitions garantissent d’atteindre une réduction de minimum 24% des émissions de GES issues du transport par rapport à 2005, objectif fixé dans le cadre du Plan National Energie Climat.

Afin de contribuer à atteindre les objectifs très ambitieux fixés par la vision « FAST 2030 », certaines actions avaient pu être soutenues via le Plan wallon d’investissements principalement en vue de l’amélioration de la mobilité en Wallonie. FAST 2030 fait par ailleurs l’objet d’un plan d’action : la Stratégie Régionale de Mobilité (SRM) qui permet de donner une ligne de conduite globale pour atteindre les objectifs.

Evolution et verdissement du parc de véhicules

- **Verdissement du parc de véhicules particuliers**

L’objectif de composition du parc à 2030 tel que présenté ci-dessous doit rester adaptable aux évolutions à moyen terme qui ne peuvent être anticipées aujourd’hui, telles que l’évolution de la technologie, du prix des équipements, du prix des différentes sources d’énergie, de la mise sur le marché de nouveautés, etc.

Actuellement, le secteur du transport consomme presque exclusivement des produits pétroliers, avec une place importante du diesel qui représente 56% du parc automobile en 2018 constitué par 1,8 millions de véhicules en Région wallonne. Par ailleurs, le diesel motorise la quasi-totalité des autres véhicules (camions, autobus, camionnettes, tracteurs, etc.).

A terme, la volonté est de renforcer les parts de carburants de substitution dans le mix énergétique du transport avec une transition assumée temporairement vers des carburants fossiles qui permettront une diminution notable des effets climatiques et environnementaux.

L’évolution se fera de manière coordonnée avec les objectifs attendus dans le cadre du Plan d’actions national pris en application de la Directive 2014/94/UE sur le déploiement d’une infrastructure en carburants alternatifs. Cette évolution sera également concordante avec les objectifs repris dans le Pacte énergétique, principalement en ce qui concerne les véhicules électriques dont la part devrait croître substantiellement à partir de 2030 avec un taux de renouvellement annuel fixé à 25% du parc (i.e. entre 40.000 et 45.000 véhicules électriques/an à partir de 2030).
Tableau 5 : Évolution du parc de véhicules particuliers

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (dont microhybridation)</td>
<td>52,52% (0,06%)</td>
<td>17% (3%)</td>
</tr>
<tr>
<td>Essence (dont microhybridation)</td>
<td>46,36% (0,9%)</td>
<td>40% (13%)</td>
</tr>
<tr>
<td>GNC</td>
<td>0,07%</td>
<td>18%</td>
</tr>
<tr>
<td>BEV (Battery Electric Vehicle)</td>
<td>0,13%</td>
<td>19%</td>
</tr>
<tr>
<td>PHEV (Plug-in Hybrid Electric vehicle)</td>
<td>0,23%</td>
<td>5%</td>
</tr>
<tr>
<td>Hydrogène</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

- **Diversification de la flotte des autobus**

Il convient déjà de constater que l’article 34 du Contrat de service passé entre la Wallonie et l’Opérateur de Transport wallon pour la période 2019-2024 prévoit déjà une approche ambitieuse sur l’amélioration des indicateurs environnementaux des transports publics avec un objectif d’amélioration global de 30% dans la réduction des émissions de gaz à effets de serre qui passe, entre autres, par la diversification des ressources énergétiques pour les véhicules mis en service. L’atteinte de cet objectif est en ligne avec les obligations nées de la

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (dont micro-hybridation)</td>
<td>96%</td>
<td>50% (15%)</td>
</tr>
<tr>
<td>GNC</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>BEV (Battery Electric Vehicle)</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>PHEV (Plug-in Hybrid Electric vehicle)</td>
<td>4%</td>
<td>15%</td>
</tr>
<tr>
<td>Hydrogène</td>
<td></td>
<td>5%</td>
</tr>
</tbody>
</table>

Tableau 6 : Évolution du parc de bus

- **Verdissement du transport de marchandises par camion et camionnette**

La question de la logistique et du fret doit être regardée de manière intégrée avec un soutien structurel spécifique vers les technologies les plus adaptées au transfert de carburant.

Dans ce contexte, la percée du gaz naturel liquéfié (GNL) dans le fret lourd permettra des gains tant en matière de consommation énergétique que d’émissions (CO₂ et polluants atmosphériques locaux). Il sera également important, dans le cas de logistiques lourdes plus courtes (moins de 150 km quotidiens) de renforcer le potentiel des camions hybrides ou électriques purs en fonction de l’évolution technologique (les premiers camions totalement électriques restant actuellement en phase de test). A terme, l’hydrogène pourrait devenir un carburant important dans cette dynamique.

Actuellement, il est complexe de préjuger des évolutions technologiques permettant une électrification de ce segment. Il semble néanmoins raisonnable d’évaluer à 1/4 le parc de camions converti au gaz naturel avec un parc en maintien par rapport à 2012.
Le cas des camionnettes mérite également une attention particulière. Actuellement, le parc wallon est de 240.000 véhicules (classe N1) mais a subi une croissance considérable depuis 1990 (triplement du parc). Cette croissance s’explique essentiellement par l’introduction (1er avril 2016) du prélèvement kilométrique pour les véhicules de plus de 3,5 tonnes de masse maximale autorisée et par l’accroissement du commerce en ligne. Une croissance de 60% d’ici à 2030 du commerce en ligne pourrait induire un accroissement considérable de ce segment routier.

- Déploiement des infrastructures de transport

En termes d’infrastructures, il est nécessaire d’assurer le déploiement de :

3. La filière du biogaz sera soutenue afin de fournir, en circuit court, une part importante croissante du gaz avec 5% de biogaz en 2025 et 15% en 2030. Même si le réseau de gaz naturel est bien structuré en Wallonie, le recours au biogaz permettra de répondre à des besoins dans les zones non équipées.
5. Stations Hydrogène : Il est estimé que la transition vers l’hydrogène, essentiellement dans le transport lourd, nécessitera un besoin de 10 stations en 2025 et de 20 en 2030.

iv. Objectif spécifique en matière de gaz fluorés

Les émissions de gaz à effet de serre fluorés représentent 3% des émissions wallonnes de gaz à effet de serre. Certains équipements peuvent présenter des émissions unitaires très élevées. C’est notamment le cas de certains équipements de production de froid dans le secteur de la grande distribution qui peuvent contenir des quantités importantes d’un gaz réfrigérant caractérisé par un pouvoir de réchauffement proche de 4000 et être caractérisés par des taux de fuites.

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td>GNC (toutes technologies)</td>
<td>0%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Tableau 7 : Evolution du parc de camions
importants. A titre d’exemple, un équipement contenant 1 tonne de ce gaz et présentant un taux de fuite annuel de 5% émet une quantité de gaz dont l’impact sur le réchauffement climatique est équivalent à la combustion de 75 000 litres de mazout. Il convient dès lors d’agir sur ces sources d’émissions, d’autant plus que des technologies alternatives utilisant des réfrigérants caractérisés par un faible pouvoir de réchauffement, voir nul, sont maintenant disponibles. Les mesures de réduction des émissions de GES dans le secteur des gaz fluorés sont considérées comme celles présentant un bon rapport coût/efficacité.

L’objectif général est de réduire les émissions de gaz fluorés de 50% en 2030 par rapport à 2005 (conformément à l’accord de Kigali\(^8\)).

2.1.2. Energie Renouvelable

i. Objectif « part d’énergie renouvelable » et trajectoire indicative

Dans sa résolution du 28 septembre 2017, le Parlement wallon demande au Gouvernement de se donner l’objectif de 100% d’énergie renouvelable dans la consommation finale d’énergie wallonne à l’horizon 2050.

Le pacte énergétique préparé par les quatre ministres de l’énergie belge, en décembre 2017, prévoit un objectif de 40% d’électricité renouvelable en 2030.

<table>
<thead>
<tr>
<th></th>
<th>GWh</th>
<th>Réalisé 2015</th>
<th>Réalisé 2016</th>
<th>Objectif 2020</th>
<th>Objectif 2030 WEM(^9)</th>
<th>Objectif 2030 WAM(^10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricité</td>
<td></td>
<td>4 060</td>
<td>4 463</td>
<td>5 555</td>
<td>5691</td>
<td>10 081</td>
</tr>
<tr>
<td>Chaleur</td>
<td></td>
<td>8 108</td>
<td>8 706</td>
<td>8 900</td>
<td>9 170</td>
<td>14233</td>
</tr>
<tr>
<td>Transport*</td>
<td></td>
<td>906</td>
<td>1 596</td>
<td>2 382</td>
<td>2 263</td>
<td>3 187</td>
</tr>
<tr>
<td>Consommation finale renouvelable</td>
<td></td>
<td>13 073</td>
<td>14 765</td>
<td>16 837</td>
<td>17 124</td>
<td>27 501</td>
</tr>
<tr>
<td>Consommation finale brute</td>
<td></td>
<td>121 700</td>
<td>124 194</td>
<td>120 770</td>
<td>131 955</td>
<td>117 032</td>
</tr>
<tr>
<td>Part de SER dans la consommation finale</td>
<td></td>
<td>10.74%</td>
<td>11.89%</td>
<td>13.94%</td>
<td>12.98 %</td>
<td>23.50 %</td>
</tr>
</tbody>
</table>

*biocarburants (taux d’incorporation de 14% fixé par le Gouvernement fédéral) et biogaz uniquement (électricité SER transport prise en compte dans « électricité »)

\(^8\) https://fr.wikipedia.org/wiki/Accord_de_Kigali

\(^9\) WEM : With Existing Measures

\(^10\) WAM : With Additional Measures
Les politiques et mesures envisagées débouchent sur une part totale de sources d’énergie renouvelables de 23.5% en 2030, soit 10.5 points de pourcentage de plus que dans le scénario avec mesures existantes. La part plus élevée dans le WAM par rapport au WEM résulte d’une augmentation de la production renouvelable, mais aussi d’une diminution de la consommation finale brute d’énergie.

Figure 2 : Evolution de la consommation finale de renouvelable en Wallonie (GWh)

Figure 3 : Evolution de l’objectif renouvelable wallon (%)
<table>
<thead>
<tr>
<th>Trajectoire indicative</th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2027</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part de renouvelable (%)</td>
<td>13.94%</td>
<td>15.85%</td>
<td>18.76%</td>
<td>20.64%</td>
<td>23.50%</td>
</tr>
<tr>
<td>Trajectoire minimale imposée par UE (%)</td>
<td>13%</td>
<td>15.66%</td>
<td>18.05%</td>
<td>20.15%</td>
<td>23.50%</td>
</tr>
</tbody>
</table>

Tableau 9 : Trajectoire indicative : part de renouvelable en 2022, 2025 et 2027

ii. Objectifs sectoriels et par technologie

![Graphique de la production d'électricité renouvelable par vecteur](image)

Figure 4 : Evolution de l’énergie renouvelable en Wallonie par vecteur (électricité, chaleur, transport) dans le scénario WAM (GWh)

- **Objectifs Electricité renouvelable**

La production d’électricité renouvelable, à l’horizon 2030, est estimée à 10 TWh, soit une augmentation de 4,5 TWh par rapport à l’estimation 2020.
Figura 5 : Évolution de l'électricité renouvelable par technologie dans le WEM et le WAM (GWh)

Une progression plus importante, par rapport au scénario de référence, des filières éolienne et photovoltaïque (respectivement +58% et +195%) est envisagée.

Ces estimations permettent d’atteindre 10.081 GWh d’électricité renouvelable, soit de l’ordre de **37% de production d’électricité renouvelable dans la consommation finale d’électricité en 2030**. Il convient de préciser que le développement de l’éolien off-shore, à lui seul, permettra d’atteindre 40% de l’objectif belge.
Objectifs Chaleur renouvelable

La production de chaleur renouvelable, à l’horizon 2030, est estimée à 14,2 TWh soit une augmentation de 5,3 TWh par rapport à l’estimation 2020.

![Graphique de l’évolution de la chaleur renouvelable par filière dans le WEM et le WAM (GWh)](image)

Par rapport au scénario de référence, une augmentation de 55% de la production de chaleur renouvelable est envisagée.

L’ensemble des technologies et des secteurs sont concernés pour atteindre cet objectif, comme le montrent les graphiques suivants en ce qui concerne le solaire thermique, les pompes à chaleur et la biomasse\(^\text{11}\) (hors cogénération).

\(^{11}\) Biomasse solide et biogaz
Figure 7 : Evolution de la consommation issue de biomasse (hors cogénération) dans les secteurs

Figure 8 : Evolution de la consommation issue du solaire thermique dans les secteurs
Ces efforts permettent d’atteindre une **part de chaleur renouvelable dans la consommation finale brute de chaleur de 24.7%** (comparativement à 13.1% en 2015 et 14.7% en 2020).

La part de renouvelable dans le secteur du chauffage et du refroidissement augmente donc de 1 point de pourcentage en moyenne annuelle entre 2020 et 2030. Le développement de chaque filière a été envisagé au regard du potentiel technique et économique. Par ailleurs, en ce qui concerne la biomasse, les impacts sur la qualité de l’air, la disponibilité de la matière, la durabilité, ont également été pris en compte. Le potentiel a été évalué en fonction de la hiérarchie des ressources végétales.

Objectif transport renouvelable

L’objectif renouvelable dans le transport est bien supérieur à celui du WEM en raison d’un taux d’incorporation des biocarburants supérieur tel que décidé par le Gouvernement fédéral (14%), de la percée du biogaz mais aussi de la pénétration accrue des véhicules électriques.

iii. Trajectoires relatives à la demande en bioénergie et à l’approvisionnement en biomasse

La production de chaleur et d’électricité à partir de biomasse, telle que reprise au point « ii. Objectifs sectoriels et par technologie » est issue à la fois de biomasse solide et de biogaz.

Ressources forestières

Concernant l’approvisionnement local en bois-énergie, le postulat retenu est le maintien du statu quo actuel du secteur forêt-bois (exploitation forestière,
industrie du bois d’œuvre, d’industrie, etc.), ce qui permet de ne pas perturber l’organisation de la filière bois. Dans un scénario business as usual, les dernières simulations de prévision d’évolution des ressources forestières wallonnes prévoient ainsi un accroissement du volume sur pieds\(^{12}\) et, de là, un maintien de la fonction de puit de carbone de nos forêts.

Selon les estimations proposées par ValBiom\(^{13}\), l’ensemble des sources d’approvisionnement local totalise 7.806 GWh au départ de bois-énergie, répartis de la manière suivante selon la matière :

<table>
<thead>
<tr>
<th>GWh</th>
<th>Energie primaire disponible en 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>« Bois de feu »</td>
<td>1.943</td>
</tr>
<tr>
<td>Pellets</td>
<td>2.342</td>
</tr>
<tr>
<td>Liqueur noire</td>
<td>2.447</td>
</tr>
<tr>
<td>Bois de bords de route</td>
<td>75</td>
</tr>
<tr>
<td>Déchets de bois de type « bois B »</td>
<td>925</td>
</tr>
<tr>
<td>Plaquettes forestières</td>
<td>74</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.806</td>
</tr>
</tbody>
</table>

Tableau 10 : Ressources forestières locales (2030)

En ce qui concerne les importations, notons que la fermeture prévue des Awirs (alimentée à partir de pellets 100% importés) permettra une réduction des importations de l’ordre de 800 GWh. Par ailleurs, pour la production de chaleur majoritairement, une croissance relativement limitée des importations en bois-énergie est attendue.

- **Ressources agrocombustibles\(^{14}\)**

Une croissance des superficies supérieure à la tendance récente est considérée, sur base de conditions favorables et incitatives. 1.500 ha sont considérés comme disponibles à la production en 2030.

\(^{13}\) Note méthodologique sur la contribution des bioénergies aux objectifs du PACE/PNEC (aout 2019)

\(^{14}\) Miscanthus, taillis à courte rotation de saule, …
Ressources biométhanisables

L’exercice a été réalisé en se basant sur les données de :

Les types de matières ont été regroupés en 7 grandes catégories, telles que reprises dans le tableau ci-dessous.

Selon ValBiom, le gisement réaliste local (potentiels théoriques auxquels on applique un coefficient de mobilisation, qui tient compte d’une réalité technique, agronomique et environnementale) est de l’ordre de **7.625 GWh**.

<table>
<thead>
<tr>
<th>GWh</th>
<th>Panorama 2018 (déjà exploité)</th>
<th>Gisement réaliste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogaz de CET</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Fraction fermentescible des ordures ménagères (FFOM)</td>
<td>24</td>
<td>113</td>
</tr>
<tr>
<td>Biogaz de station d’épuration</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Biogaz de résidus des industries agroalimentaires</td>
<td>148</td>
<td>737</td>
</tr>
<tr>
<td>Biogaz de résidus de cultures</td>
<td>50</td>
<td>1.079</td>
</tr>
<tr>
<td>Biogaz d’effluents d’élevage</td>
<td>48</td>
<td>1.635</td>
</tr>
<tr>
<td>Biogaz de cultures dédiées</td>
<td>59</td>
<td>4.024</td>
</tr>
<tr>
<td>TOTAL</td>
<td>482</td>
<td>7.625</td>
</tr>
</tbody>
</table>

Tableau 11 : Biogaz - Gisement réaliste selon les types de matière

Pour atteindre les hypothèses considérées au sein de ce Plan pour les applications de cogénération, de chaleur seule (via injection essentiellement) et du transport (incorporation du biogaz de 5%), moins d’un quart du gisement réaliste total identifié est mobilisé. Notons que le pourcentage d’exploitation du gisement réaliste varie selon la matière considérée : les pourcentages d’exploitation seront par exemple plus élevés lorsqu’il s’agit de déchets, et moins élevés lorsqu’il s’agit de cultures dédiées.
L’exploitation de ces potentiels supplémentaires ne pourra se faire qu’en accompagnant la filière par différents mécanismes.

2.2. Efficacité énergétique

2.2.1. Contribution indicative en matière d’efficacité énergétique

i. Consommation finale

En additionnant l’impact des mesures que la Wallonie envisage entre 2020 et 2030, la consommation finale du territoire diminue de 11%, par rapport au scénario de référence, et de 23% par rapport à 2005, pour atteindre 115 TWh pour l’ensemble des secteurs.

![Consommation finale énergétique totale](image)

Figure 10 : Consommation finale de la Wallonie (GWh)
La contribution de chaque secteur aux gains de consommation d’énergie finale est évaluée comme suit, dans le scénario WAM :

<table>
<thead>
<tr>
<th>Consommation finale (GWh)</th>
<th>2005</th>
<th>2030 WEM</th>
<th>2020 WAM</th>
<th>2030 WAM</th>
<th>Ecart 2030 WAM - WEM</th>
<th>Ecart 30-05 WAM %</th>
<th>Ecart 30-20 WAM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résidentiel</td>
<td>37 585</td>
<td>30 018</td>
<td>29 524</td>
<td>26 141</td>
<td>-12.92%</td>
<td>-30.45%</td>
<td>-11.46%</td>
</tr>
<tr>
<td>Tertiaire</td>
<td>12 249</td>
<td>13 800</td>
<td>12 813</td>
<td>12 146</td>
<td>-11.99%</td>
<td>-0.84%</td>
<td>-5.21%</td>
</tr>
<tr>
<td>Industrie</td>
<td>61 793</td>
<td>41 375</td>
<td>39 408</td>
<td>40 272</td>
<td>-2.67%</td>
<td>-34.83%</td>
<td>2.19%</td>
</tr>
<tr>
<td>Agriculture</td>
<td>1 289</td>
<td>1 289</td>
<td>1 289</td>
<td>1 289</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Transport</td>
<td>36 305</td>
<td>43 916</td>
<td>35 265</td>
<td>35 619</td>
<td>-18.89%</td>
<td>-1.89%</td>
<td>1%</td>
</tr>
<tr>
<td>TOTAL Consommation finale énergétique</td>
<td>149 221</td>
<td>130 398</td>
<td>118 300</td>
<td>115 467</td>
<td>-11.45%</td>
<td>-22.62%</td>
<td>-2.39%</td>
</tr>
</tbody>
</table>

Tableau 12 : Consommation finale WAM

Entre 2020 et 2030, les mesures liées à la rénovation des bâtiments, aux changements de comportement, aux performances énergétiques des bâtiments neufs et à la part accrue de chaleur renouvelable dans les bâtiments impactent de manière importante les secteurs résidentiel et tertiaire.

Dans le secteur du transport, la Wallonie vise à réaliser d’ambitieux efforts, grâce à la mise en œuvre de son programme FAST. La nouvelle structure du parc de véhicules (déploiement des véhicules électriques et au CNG, recul des moteurs thermiques classiques) impacte également la répartition de la consommation finale.

Figure 11 : Consommation finale par secteur (GWh)
ii. Consoommation primaire

La consommation primaire est dépendante du parc de production d’électricité estimé. L’effort repris ici suppose la sortie du nucléaire selon le calendrier prévu à ce jour et une part limitée d’importation wallonne.

Figure 13 : Consommation d’énergie primaire en Wallonie (GWh)
La consommation d’énergie primaire diminue de 36% par rapport à 2005 et de 15% par rapport à 2015. La consommation primaire de produits pétroliers est en nette diminution. Cette diminution est compensée par une augmentation de la consommation primaire de gaz et de renouvelable. L’importation d’électricité du scenario WAM est par hypothèse considérée relativement limitée (1.600 GWh).

2.2.2. Economies d’énergie cumulées 2021-2030, en vertu de l’article 7 de la directive « Efficacité énergétique »

i. L’imposition européenne

Ainsi, entre le 1er janvier 2021 et le 31 décembre 2030, la Wallonie doit atteindre un objectif cumulé d’économies d’énergie finale au moins équivalent, chaque année, à 0.8% de sa consommation finale annuelle (calculée sur base de la moyenne des années 2016, 2017 et 2018). À priori, cette obligation sera ensuite reconduite tous les 10 ans.

Si les états membres disposent encore de certaines flexibilités pour la mise en œuvre de ce mécanisme d’obligation (choix entre un mécanisme de certificats blancs, des mesures alternatives gouvernementales, ou un mix des deux), les règles de fixation de l’objectif ainsi que de comptabilisation des économies pour l’atteindre sont renforcées.

Ainsi, 0.8% de l’ensemble de la consommation d’énergie finale mène à un effort annuel supérieur à 1.5% des ventes, transport exclus, sur la période précédente (2014-2020).

<table>
<thead>
<tr>
<th>Année</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
<th>Objectif cumulé</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>0.8%</td>
<td>8.0%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>7.2%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>6.4%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>5.6%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>4.8%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>4.0%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>3.2%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>2.4%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
</tr>
<tr>
<td>EE globale active</td>
<td>0.8%</td>
<td>1.6%</td>
<td>2.4%</td>
<td>3.2%</td>
<td>4.0%</td>
<td>4.8%</td>
<td>5.6%</td>
<td>6.4%</td>
<td>7.2%</td>
<td>8.0%</td>
<td>44.0%</td>
</tr>
</tbody>
</table>

ii. Concrètement en Wallonie

Avec une consommation finale énergétique en Wallonie de 121.7TWh en 2016, et de 120.9TWh en 2017, et en supposant (donnée non encore disponible) une
consommation énergétique de 121TWh en 201815, ces 0.8\% se traduisent par un objectif de réduction linéaire annuelle de 970 GWh.

<table>
<thead>
<tr>
<th>Source : Bilans énergétiques de la Wallonie, ICEDD juin 2019</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>Valeur moyenne de référence pour l’obligation 2021-2030</th>
<th>Economie annuelle de 0,8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation finale hors usages énergétiques (TWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dont pour l’industrie (TWh)</td>
<td>39,9</td>
<td>39,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dont pour le transport (TWh)</td>
<td>36,4</td>
<td>36,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dont pour le logement (TWh)</td>
<td>31,1</td>
<td>30,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dont pour le tertiaire (TWh)</td>
<td>13,1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dont pour l’agriculture (TWh)</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur moyenne de référence pour l’obligation 2021-2030</td>
<td>121,7</td>
<td>120,9</td>
<td>121,2</td>
<td></td>
<td>0,970</td>
</tr>
<tr>
<td>Consommation finale (TWh)</td>
<td>121,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur moyenne de référence pour l’obligation 2021-2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economie annuelle de 0,8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tableau 13 : Détail des consommations d’énergie finale des années 2016 à 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pour impact climat : les degrés-jours 15/15</td>
</tr>
</tbody>
</table>

La grille de réduction appliquée sur cette base obligataire de 122.5TWh fournit ainsi les chiffres concrets des économies à réaliser :

Ce qui conduit à l’effort requis suivant pour remplir en Wallonie l’obligation article 7 :

- Une économie d’énergie additionnelle de 970 GWh chaque année entre 2021 et 2030

15 La consommation finale annuelle est liée à différents facteurs d’activité (croissance économique, démographie, climat, etc...). Entre 2017 et 2018, les conditions macro-économiques sont supposées ne pas avoir fondamentalement changé, et l’influence climatique est faible, et en théorie dans le sens de la diminution de consommation. Une estimation prudente mène à estimer une consommation 2018 similaire à celle de 2017.
• Un impact en 2030 estimé à 9.700 GWh de réduction par rapport à un scenario sans cette obligation
• Un objectif wallon de 53.350 GWh cumulé sur la période 2021-2030.

2.2.3. Objectifs indicatifs (ou jalons) de la stratégie rénovation long terme résidentielle et non résidentielle

i. Objectifs long terme de la stratégie rénovation

Les objectifs de la stratégie de rénovation énergétique du parc de bâtiments wallons sont :

➢ Pour le résidentiel : tendre en 2050 vers le label PEB A (Espec ≤ 85kWh/m²an) en moyenne pour l’ensemble du parc de logements.

➢ Pour le tertiaire : tendre en 2050 vers un parc de bâtiments tertiaires neutre en énergie (zéro énergie) pour le chauffage, l’eau chaude sanitaire, le refroidissement et l’éclairage.

L’analyse des résultats de l’étude COZEB-extension a permis de déterminer des priorités d’intervention en vue d’atteindre cet objectif. Cette étude a évalué l’ensemble des mesures rentables pour les différentes typologies de bâtiments. Les priorités proposées correspondent aux mesures les plus rentables, à savoir la rénovation profonde des logements les moins performants (l’isolation de l’enveloppe, avec priorité sur les toits, sans négliger les remplacements de systèmes arrivés en fin de vie). Cette rénovation devra toutefois se faire en assurant que tout projet de rénovation s’inscrive dans une réflexion globale et cohérente avec les objectifs de la région.

La réalisation de ces objectifs représente une réduction de 70% de la consommation d’énergie en 2050 par rapport à 2005.

ii. Objectifs moyen terme de la stratégie rénovation

Un phasage du taux de rénovation à atteindre pour viser l’objectif de 2050 est proposé dans la stratégie et décliné en périodes de 5 ans. Ce phasage permet de vérifier si la Wallonie s’inscrit dans la bonne trajectoire pour l’atteinte de ses objectifs.
Tous les bâtiments visés par la stratégie ne pourront pas atteindre l’objectif formulé en moyenne pour l’ensemble du parc. C’est pourquoi la démolition-reconstruction doit être considérée comme une option.

Par ailleurs, l’agrandissement du parc de bâtiments neufs performants est un des éléments qui participeront à l’amélioration du parc et à l’objectif global. A cet égard, il faut souligner le développement de Quartiers Nouveaux qui ont notamment pour objectifs de lutter contre le réchauffement climatique et « d’optimiser les productions/ressources locales et les consommations énergétiques ». La construction neuve, avec des exigences de performance élevées, devra également contribuer aux objectifs globaux. Il est attendu de l’ordre de 15 000 nouveaux logements chaque année, venant s’ajouter au parc actuel de l’ordre 1,5 millions de logements.

L’évolution relative des consommations d’énergie qui découle de cette mise en œuvre par étapes aux échéances 2020, 2030 et 2050 est illustrée dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Réduction 2020 VS 2005</th>
<th>Résidentiel</th>
<th>Tertiaire</th>
<th>Stratégie</th>
<th>Objectif BE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10.4%</td>
<td>-12.9%</td>
<td>-11.1%</td>
<td>-11.5%</td>
</tr>
<tr>
<td>Réduction 2030 VS 2005</td>
<td>-27.9%</td>
<td>-32.0%</td>
<td>-29.1%</td>
<td>-24.0%</td>
</tr>
<tr>
<td>Réduction 2050 VS 2005</td>
<td>-70.3%</td>
<td>-70.3%</td>
<td>-70.3%</td>
<td>-70.3%</td>
</tr>
</tbody>
</table>

Tableau 14 Réduction des consommations d’énergie aux échéances 2020, 2030 et 2050 par rapport à 2005

Cette évolution fixe l’objectif à l’horizon 2030 qui vise à réduire la consommation d’énergie moyenne en tertiaire et résidentiel de 29,1%.

iii. Phasage des objectifs

Le phasage de la rénovation tient compte du besoin de répartir les investissements et de planifier en priorité les investissements à l’impact potentiel le plus important16.

Bien que le phasage des mesures de rénovation soit déterminé au cas par cas (dans une feuille de route de rénovation propre à chaque bâtiment), il est attendu que, globalement pour l’ensemble du parc, la rénovation énergétique profonde par étape cible prioritairement la rénovation des toits, le reste de l’enveloppe ensuite et finalement la rénovation des systèmes et l’installation de sources de production d’énergie renouvelables.

16 Les hypothèses de travail sont disponibles à l’annexe 8 de la stratégie rénovation wallonne (Annexe B)
iv. **Économies d’énergie attendues**

Le graphique ci-dessus résume les économies d’énergie escomptées. Ainsi, entre 2017 et 2020, les besoins d’énergie diminuent en moyenne de 1%/an, pour passer à 1.6%/an entre 2020 et 2030 et atteindre 2.2%/an entre 2030 et 2050.

Si on compare les besoins en énergie de 2020 par rapport à ceux de 2017 (chauffage, eau chaude sanitaire, refroidissement du logement et du tertiaire, et l’éclairage dans le tertiaire), une économie de 1 TWh est attendue pour 2020. Elle s’élèvera à 5.8 TWh dès 2030 et devrait atteindre 17 TWh en 2050.

2.2.4. Économies d’énergie dans le bâtiment neuf

Le bâtiment neuf est traité sous l’angle normatif, considérant que le niveau d’exigence est le Q-ZEN à brève échéance, soit 2021 (et 2019 pour les bâtiments publics).

L’exigence sera revue au regard des mises à jour de l’étude « cost optimum » et au regard des objectifs climatiques et énergétiques, dont la dernière révision (juin 2018) indique que l’optimum se trouve au-delà du niveau Q-ZEN. La mise à jour de 2023 déterminera si le niveau ZEN peut devenir la nouvelle norme à partir de 2025. En tout état de cause, la Wallonie vise à la neutralité carbone dans les constructions neuves à partir de 2027.
2.2.5. Exemplarité des pouvoirs publics en vertu de l’article 5 de la directive « Efficacité Énergétique »

i. L’imposition européenne : surface à rénover ou économies d’énergie équivalente 2020-2030

La directive Efficacité Énergétique 2012/27/EU vise à réduire les besoins énergétiques en agissant sur de nombreux leviers. Les consommations liées au secteur du bâtiment sont clairement identifiées comme un gisement majeur d’économies d’énergie potentielles. L’exemplarité des pouvoirs publics en la matière, en application concrète de leur engagement dans le cadre des Accords de Paris, est un outil important via l’effet d’entraînement qu’il provoque.

C’est pourquoi l’article 5 de la directive 2012/27/EU impose depuis 2014 une obligation de rénovation exemplaire de 3% chaque année du parc de bâtiments des gouvernements centraux. Cette obligation est étendue à la période 2021-2030. De plus, l’article 5 incite les pouvoirs locaux à appliquer, sur base volontaire, la même exemplarité en rénovant leur patrimoine immobilier.

Concrètement, ce qui est imposé aux gestionnaires de patrimoine public obligés est :

- L’inventaire de leur patrimoine immobilier
- Le suivi des consommations annuelles de ces bâtiments
- Le benchmark des prestations envers la référence coût-optimum
- La mise en place d’un plan d’action ciblé permettant d’amener chaque année au moins 3% supplémentaires du patrimoine au niveau de prestation de référence

ii. Concrètement en Wallonie depuis 2014

Les gouvernements centraux ayant des bâtiments sur le territoire wallon sont :

- la Wallonie,
- la Fédération Wallonie-Bruxelles,
- la Deutschsprachige Gemeinschaft
- et le Gouvernement Fédéral.

Ces institutions, soumises à l’obligation directe de la directive, s’engagent donc chacune individuellement à atteindre l’objectif d’efficacité qui lui est assigné en vertu de l’état initial de son parc de bâtiment et de la réglementation en matière de performance énergétique des bâtiments en vigueur sur le territoire où se trouve leurs bâtiments.

Les critères permettant d’établir la liste de ces bâtiments sont les suivants :

- appartenance à l’institution concernée
- occupation par le gouvernement central concerné
- présence d’un système de chauffage ou de refroidissement
• surface au sol utile totale supérieure à 250 m²
• performances énergétiques non conformes aux exigences régionales minimales (fixées en 2013 à 286kWhprimaires/m²occupé)

Une actualisation de ces chiffres sera réalisée au travers d’un cadastre.

Ensemble, la Région wallonne, la Fédération Wallonie Bruxelles et la Deutsche Gemeinschaft ont économisé quasiment 18 GWh d’énergie primaire sur le territoire wallon entre 2013 et 2017. Ce qui représente une diminution de la consommation finale de ces bâtiments d’environ 2%/an.

iii. Renforcement de la mesure à l’horizon 2030

La Stratégie Rénovation à long terme des bâtiments wallons prévoit la neutralité énergétique de l’ensemble des bâtiments du secteur tertiaire à l’horizon 2050, ce qui signifie une diminution moyenne de leur consommation finale de 64% par rapport à 2013 (ou de 50% par rapport à 2005).

Les bilans énergétiques wallons démontrent que les bureaux publics sont généralement plus énergivores en combustibles (mais pas en électricité) que leurs homologues du secteur privé. La priorité d’action est donc bien à placer sur ces bâtiments publics.

Pour atteindre ses objectifs 2030 et 2050, la Wallonie va donc étendre et renforcer l’exemplarité de ses bâtiments publics, en :

- Imposant une obligation de rénovation exemplaire de tous les bâtiments publics, lors de rénovation profonde
- Traduisant l’exemplarité publique par la neutralité énergétique au plus tard en 2050 suivant un phasage à déterminer entre les administrations centrales et les pouvoirs locaux
- Définissant la neutralité énergétique comme la compression des besoins en chauffage, ECS, refroidissement et éclairage pour atteindre la performance des bâtiments neufs équivalents, tout en maintenant les autres consommations électriques à ou sous leur niveau actuel, suivie de la couverture de ces besoins incompressibles par une production renouvelable
- Ciblant en priorité les bâtiments administratifs de bureaux et les écoles, avant d’étendre aux autres types de bâtiments publics

Estimation d’impact de cette obligation :

- Sur base d’une consommation finale résiduelle incompressible estimée à 80kWh/m²/an pour correspondre au concept de neutralité énergétique
- Sur base d’une obligation de neutralité énergétique en 2030 pour les gouvernements centraux et en 2040 pour les pouvoirs locaux et l’enseignement (avec une hypothèse de réalisation de 30% en 2030)
- Sur base d’une application aux bâtiments administratifs et scolaires (soins de santé, culture et sports non pris en compte)
- Sur base d’une surface identique à celle d’aujourd’hui, soit 5.300.000m² de bâtiments administratifs et 10.500.000m² de bâtiments scolaires
- Sur base d’une consommation finale de départ estimée à 220kWh/m²/an en 2013 tant pour les bureaux que pour l’enseignement

Cela donne une économie d’énergie finale estimée globalement à 720 GWh entre 2013 et 2030, et répartie comme suit :
- 81 GWh pour les gouvernements centraux
- 198 GWh pour les pouvoirs locaux
- 441 GWh pour les bâtiments scolaires

2.2.6. Autres objectifs sectoriels

i. Industrie non-ETS

Une réduction des émissions de GES de l’industrie non-ETS en 2030 (p.r. 2005) pourrait être atteinte par la combinaison de 2 objectifs :

- Le premier type de mesures envisageables est une poursuite de l’amélioration de l’efficacité énergétique (EE) de ce secteur. Une valeur de 10% d’EE via différents types de mesures techniques a été retenue.

- Au-delà de cette valeur, il apparaît qu’il faut envisager des mesures plus radicales de décarbonation des industries non-ETS. Il est décidé, en complément à des mesures ‘classiques’ d’EE, de procéder à un fuel switching de l’approvisionnement énergétique de ce secteur. Des pistes qui permettront de favoriser le passage à l’utilisation d’autres vecteurs énergétiques. Il s’agit, d’une part, de l’utilisation de la chaleur renouvelable (solaire thermique, pompes à chaleur liées ou non à la géothermie ou combustion de biomasse) et, d’autre part, du recours à de l’électricité, produite de façon décarbonée. Le switch atteindra 8% de la consommation et la production de chaleur à partir de source renouvelable 231 GWh ;

- La mise en œuvre de solutions de capture et séquestration ou réutilisation du CO₂ pourront également être envisagées dans des projets pilotes dont l’impact restera temporairement limité.

2.3. Marché de l’énergie

2.3.1. Objectifs relatifs à l’adéquation du système électrique, ainsi que la flexibilité du système énergétique, en lien avec production d’énergie renouvelable

i. Objectifs spécifiques en matière de flexibilité et d’évolution des réseaux

Aucun objectif spécifique en termes de volumes de flexibilité n’a été défini. Par flexibilité, il faut aussi bien entendre la gestion de la demande et le déplacement de charge que le stockage individuel ou collectif. Néanmoins, différentes mesures sont ou seront mises en place pour permettre et faciliter la mobilisation de cette flexibilité (cf. compteurs intelligents, Décret électricité et AGW flexibilité, communautés d’énergie renouvelables)

Cette flexibilité couvrira deux objectifs :

- Sécurité d’approvisionnement et équilibre du système. En effet, avec la sortie du nucléaire, le mix énergétique va fortement évoluer et les sources d’énergies renouvelables, souvent intermittentes, vont se multiplier. Les sources de flexibilité de la Région contribueront à la stabilité du système. Les capacités nécessaires seront fonction des objectifs du Fédéral et de la répartition entre les Régions.
- Gestion des congestions. Au niveau des réseaux de distribution, la multiplication des sources d’énergies renouvelables risque de créer des congestions. Le développement de flexibilité au niveau des réseaux de distribution est une piste à mettre en œuvre en parallèle au renforcement de ceux-ci.

ii. Objectifs en matière d’évolution des réseaux

Il n’y a pas lieu de fixer d’objectifs relatifs au développement des réseaux intelligents, mais bien de déterminer les grandes règles qui sous-tendent leur développement :

- La maximisation de la capacité d’accueil des infrastructures (pour les outils de production et les outils flexibles) et de la synchronicité en visant l’optimisation du bien-être collectif du système électrique dans son ensemble ;
- La maximisation des efforts d’efficacité énergétique ;
- La rémunération des réseaux en fonction d’indicateurs de performance, à commencer par la suppression des tarifs non liés au système électrique ;

Par ailleurs, la modernisation des réseaux de distribution en déployant les compteurs intelligents conformément au cadre fixé par le décret du 19 juillet 2018,
permettra d’encourager l’intégration des productions décentralisées, de développer de nouvelles formes de flexibilité ainsi que le développement de différents modes de partage d’énergie tout en autonomisant le consommateur qui sera informé de manière plus précise et en temps quasi-réel sur sa consommation ou production d’énergie.

2.3.2. Autres objectifs relatifs à la protection des consommateurs et d’amélioration de la compétitivité du secteur de la vente au détail de l’énergie

L’objectif est de veiller à garantir un niveau de prix de l’énergie compétitif par rapport à nos pays concurrents.

2.3.3. Objectifs relatifs à la précarité énergétique

PLAN WALLON DE LUTTE CONTRE LA PAUVRETÉ

La précarité énergétique n’est pas clairement définie par la législation. Il est généralement admis que la précarité énergétique fait référence à une situation dans laquelle une personne ou un ménage rencontre dans son logement des difficultés particulières à satisfaire ses besoins élémentaires en énergie.

La lutte contre la pauvreté fait partie intégrante des politiques wallonnes depuis de nombreuses années. En septembre 2015, le premier Plan wallon de lutte contre la pauvreté a été adopté pour renforcer l’action de la Région dans ce domaine. Impliquant tous les ministres et élaboré en partenariat avec les acteurs du secteur, ce plan veut identifier des actions spécifiques ayant un impact concret sur les réalités quotidiennes des personnes vivant en situation de précarité ou risquant de l’être. Il s’articule dès lors autour d’axes thématiques correspondant aux principales catégories de dépenses dans le budget des ménages wallons : le logement, l’alimentation, l’énergie, l’eau, la santé, les politiques familiales, la mobilité, les loisirs, le numérique… Pour chacun de ces axes, le plan énonce les décisions, résolutions, actions concrètes que le Gouvernement wallon s’engage à prendre.

Considérant que 10% des ménages les plus pauvres consacrent 19% de leur revenu annuel à l’énergie, la partie énergie du plan de lutte contre la pauvreté vise à améliorer la salubrité et la performance énergétique des logements.
BAROMETRE BELGE DE LA PRECARITE ENERGETIQUE

Le dernier baromètre de la précarité énergétique (2009-2017) signale, comme l’an dernier, que plus d’un ménage wallon sur quatre souffre d’au moins une des trois formes de précarité énergétique :

- 19.5% des ménages étaient en situation de précarité énergétique mesurée, ce qui correspond aux ménages qui consacrent une part trop importante de leurs revenus aux dépenses liées à l’énergie.

- 3.7% des ménages étaient en situation de précarité énergétique cachée, ce qui correspond aux ménages qui restreignent leur consommation d’énergie (en comparaison aux ménages similaires).

- 9.8% des ménages étaient en situation de précarité énergétique ressentie, ce qui correspond aux ménages qui déclarent avoir eu des difficultés financières à chauffer leur logement correctement.

Au niveau de la Belgique, au total, 21,7 % des ménages ont potentiellement été touchés en 2017 par une forme ou l’autre de précarité énergétique.

Les locataires, et y compris les locataires de logements sociaux, sont plus touchés par la précarité énergétique que les propriétaires. Leur capacité à agir sur le choix des vecteurs énergétiques, à améliorer la performance énergétique de leur logement ou des principaux équipements est limitée et dépend la plupart du temps d’une décision du/des propriétaire(s)-bailleur(s).

Enfin, les ménages isolés, en grande majorité des femmes avec enfants, apparaissent comme particulièrement vulnérables face à la précarité énergétique.

Les ménages ne vivant pas dans un logement relativement bien isolé sont surreprésentés dans les trois formes de précarité énergétique.

POLITIQUE ENERGETIQUE ET PRECARITE

L’accès à l’énergie pour tous et la lutte contre la précarité énergétique sont au cœur des préoccupations de la politique énergétique wallonne. L’objectif en matière de protection des consommateurs est de renforcer le niveau actuel de protection pour le public précarisé. Les mesures de soutien aux ménages en difficultés (telles que les primes aux ménages à bas revenus, l’aide hivernale, le tarif social, les plans d’action préventive pour l’énergie…) seront améliorées.

Il serait souhaitable d’élargir la notion de clients protégés pour tenir compte du niveau de revenu des ménages. En effet, cet élargissement permettrait aux ménages précarisés non repris dans les catégories existantes des clients protégés de bénéficier des mesures de protection instaurées dans le cadre des obligations

17 Baromètre de la précarité énergétique 2009-2017, Fondation Roi Baudouin, mars 2019
de service public de nature sociale, en particulier l’application du tarif social spécifique. Idéalement, cet élargissement devrait s’effectuer au niveau fédéral.

En ce qui concerne les dispositifs d’aides, une réflexion globale quant à l’efficacité des mesures existantes sera menée. Il est également souhaitable d’améliorer les mesures d’accompagnement des ménages, tant en termes d’économies d’énergie que pour s’y retrouver sur le marché.

2.4. Recherche, innovation et compétitivité

2.4.1. Objectifs de financement de la recherche et de l’innovation dans le secteur public et, le cas échéant, le secteur privé

a) Clean energy and technologies R&I national strategies and the overall vision for R&I

Les domaines thématiques prioritaires seront déterminés à partir des priorités stratégiques de la stratégie de spécialisation intelligente wallonne en recherche et innovation (RIS3), en cours de révision, en visant spécifiquement les matières dans lesquelles une expertise est reconnue en Région Wallonne, et en cohérence avec la feuille de route européenne (SET-plan) et les thématiques du cluster « climat, énergie et mobilité » du futur programme- cadre Horizon Europe.

Des priorités pour l’énergie, le climat et la mobilité ont été identifiées :

- Communautés intelligentes / intégrées, dont les districts à énergie positive, les réseaux électriques intelligents, la mobilité connectée, automatisée et autonome.
- L’intégration des systèmes de stockage
- L’efficacité énergétique du bâtiment
- Les nouveaux carburants (y compris l’électricité) et les véhicules durables.
- La gestion et la valorisation du CO₂ dans les processus de production
- Les projections, prédictions et modélisations climatiques et les nouveaux services associés
- La gestion du trafic et du réseau
- Les technologies ferroviaires.

La priorité de l’Union de l’Énergie « Faciliter la participation des consommateurs et accélérer les progrès vers le futur système énergétique intelligent » est rencontrée à travers la priorité wallonne « Communautés intelligentes / intégrées, dont les districts à énergie positive ».

La priorité de l’Union de l’Énergie « Développer et renforcer les systèmes d’efficacité énergétique » est rencontrée à travers la priorité wallonne « L’efficacité énergétique du bâtiment » et « La gestion et la valorisation du CO₂ dans les processus de production » en ce qui concerne la diminution de production de CO₂. Cette priorité wallonne couvre aussi la capture et valorisation du CO₂ anthropique, notamment en produits de valeur ajoutée comme les fuels synthétiques. La
priorité de l’Union de l’Énergie « Diversifier et renforcer les options en matière de transport durable » est donc rencontrée, de même que la priorité additionnelle « Ambition motrice dans le déploiement du captage et du stockage du carbone » en ce que la Wallonie promeut la capture et l’utilisation, non le stockage géologique, du carbone.

La gestion du trafic et du réseau et les technologies ferroviaires, bien que ne s’inscrivant pas dans les priorités de l’Union de l’Énergie, contribueront à la mobilité durable.

La R&I dans le développement de la prochaine génération de technologies d’énergies renouvelables n’est pas une priorité en Wallonie. Ceci dit, le déploiement d’énergies renouvelables, de chaleur verte, de géothermie et de réseaux de chaleur figure dans les objectifs du Plan wallon Énergie Climat. À la demande des entreprises, de la R&I dans les technologies d’énergies renouvelables pourra être financée.

b) SMART national objectives and concrete funding targets

Une partie des budgets annuels publics affectés à la Recherche et au Développement est dédiée à des projets relevant de la thématique énergie.

Dans les projets entrant en ligne de compte, la thématique énergie peut être exclusive ou partielle (par exemple, considérons un projet visant à développer une nouvelle machine qui consommera moins d’énergie à l’utilisation et dont le coût de maintenance sera diminué). Le budget repris ne concerne alors que l’objectif « efficience énergétique » du projet.

Le montant du budget dédié aux projets relevant de la thématique énergie est en moyenne de 43.000.000 € (moyenne 2012-2017). Quasi 90 % de ce montant est destiné à des projets spécifiques « énergie », le restant (10%) à des projets à thématique mixte.

Le montant annuel moyen octroyé par l’Europe dans le cadre des projets cofinancés (fonds structurels) s’élève à 1.900.000 € (moyenne 2011-2017).

Le montant annuel moyen octroyé par l’Europe par le programme cadre de recherche Horizon 2020, challenge sociétal « Secure, clean and efficient energy » s’élève environ à 2.000.000 € (moyenne 2014-2019).

Le montant annuel moyen octroyé par l’Europe par le programme cadre de recherche Horizon 2020, challenge sociétal « Climate action, environment,
resource efficiency and raw materials » s’élève environ à 1.400.000 € (moyenne 2014-2018).

L’objectif est d’arriver en 2030 à un montant annuel de dépenses publiques de 110.000.000 € par an pour les objectifs énergétiques et climatiques en recherche et innovation.

Ce montant viendrait des sources suivantes :

- Budget wallon : 75.000.000 €
- Budget issu des programmes européens : 20.000.000 €
- Budget issu du Fonds Innovation : 10.000.000 €
- Budget issu des fonds structurels : 5.000.000 €

Les budgets supplémentaires pour arriver à allouer 75 millions d’euros par an du budget wallon à la thématique énergie/climat proviendront d’autres ressources affectées à la thématique énergie - climat, étant entendu que les autres secteurs de la recherche et de l’innovation qui travaillent sur d’autres thématiques ne doivent pas voir leurs moyens réduits.

c) Setting benchmarks against which the national/regional progress will be measured

Le montant du budget public wallon affecté à des projets de recherche, développement et innovation est en moyenne de 321.000.000 € (moyenne 2012-2018). À ce cela s’ajoutent les autres composantes des budgets recherche, comme le financement des universités et des centres de recherche, ... (Cf. http://www.innovationdata.be).

Le budget privé wallon consacré la recherche est d’environ 2.000.000.000 € par an.

Le PIB wallon s’élève à 96.600.000.000 € (moyenne 2012-2018, euros courants).

La proportion du budget global wallon (public et privé) affecté à la recherche par rapport au PIB wallon est donc de 2.321.000.000 € / 96.600.000.000 € ou 2.40 %.

La proportion du budget public wallon dédié aux projets relevant de la thématique énergie est d’environ 13% du montant du budget annuel public wallon affecté aux projets de R&D (moyenne 2012-2017).

Le financement privé dédié à la recherche, développement, innovation et compétitivité « énergie » est difficile à évaluer. Il devrait tourner autour de 200.000.000 € par an.

La proportion du PIB wallon affecté à la recherche énergie (privée et publique) est donc estimée en moyenne à 0.26% (246.900.000 € / 96.600.000.000 €).

Si la recherche privée suit la même trajectoire d’objectifs que la recherche publique, celle-ci monterait à 460.000.000 € par an en 2030, ce qui ferait un taux de 0.59 % par rapport au PIB en 2030 pour les recherches publiques (financement wallon et européen) et privées en énergie et climat.
En résumé

<table>
<thead>
<tr>
<th>Wallonie</th>
<th>Budgets actuels</th>
<th>Prévision 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIB 2012-2018</td>
<td>96.600.000.000 €</td>
<td></td>
</tr>
<tr>
<td>Budget public wallon recherche</td>
<td>321.000.000 €</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget privé wallon recherche</td>
<td>2.000.000.000 €</td>
<td></td>
</tr>
<tr>
<td>Budget public/privé wallon</td>
<td>2.321.000.000 €</td>
<td></td>
</tr>
<tr>
<td>pour la recherche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget public wallon recherche</td>
<td>43.000.000 €</td>
<td>75.000.000 €</td>
</tr>
<tr>
<td>énergie moyenne 2012-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget public wallon recherche</td>
<td>pas disponible</td>
<td>(5 000 000 € ?)</td>
</tr>
<tr>
<td>climat et environnement moyenne 2012-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget reçu de l'Europe, fonds</td>
<td>1.900.000 €</td>
<td>5.000.000 €</td>
</tr>
<tr>
<td>structurels, pour la recherche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>énergie moyenne 2012-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget reçu de l'Europe, fonds</td>
<td>pas disponible</td>
<td></td>
</tr>
<tr>
<td>structurels, pour la recherche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>climat et environnement moyenne 2012-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget reçu de l'Europe, Horizon</td>
<td>2.000.000 €</td>
<td>20.000.000 €</td>
</tr>
<tr>
<td>2020, pour la recherche énergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>moyenne 2014-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget reçu de l'Europe, Horizon</td>
<td>1.400.000 €</td>
<td></td>
</tr>
<tr>
<td>2020, pour la recherche climat et</td>
<td></td>
<td></td>
</tr>
<tr>
<td>environnement moyenne 2014-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget reçu du Fonds Innovation -</td>
<td>0 €</td>
<td>10.000.000 €</td>
</tr>
<tr>
<td>NER300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 15 : Budget actuels et 2030 octroyés à la recherche et innovation énergie/climat

2.4.2. **Le cas échéant, objectifs généraux nationaux, y compris les objectifs spécifiques sur le long terme (2050) concernant le déploiement de technologies à faibles émissions de carbone.**

Nous renvoyons le lecteur vers le document Stratégie à Long Terme Climat Energie
3. POLITIQUES ET MESURES

Ce chapitre résume les principales mesures envisagées pour atteindre les objectifs exposés au chapitre précédent.

Il est à noter que de nombreuses mesures relatives à la consommation d’énergie sont décrites aux sections 3.1.2 ; et 3.2 (énergie renouvelable et efficacité énergétique) mais auront également un impact significatif sur les émissions de gaz à effet de serre (section 3.1.1), notamment pour les secteurs de la production d’énergie, du résidentiel et du tertiaire.

3.1. Décarbonation

3.1.1. Émissions de gaz à effet de serre

i. Secteur de l’agriculture et de la forsterie

Les actions envisagées dans les secteurs agricoles et forestiers consistent tout d’abord à poursuivre et à renforcer les politiques et les mesures mises en œuvre actuellement.

Ensuite, il s’agira aussi d’envisager certaines mesures additionnelles en évaluant les actions déjà prises.

Politiques et mesures existantes

Les politiques et mesures déjà mises en œuvre font déjà ressentir leurs effets. La plupart des actions dans les secteurs agricoles et forestiers consiste à renforcer ces mesures :

- Maintenir et augmenter les stocks de carbone agricoles et forestiers existants :

Les sols agricoles et forestiers constituent un stock majeur de carbone, largement supérieur au stock contenu dans la biomasse aérienne. Plusieurs pratiques sont favorables à l’accroissement des stocks de carbone dans les sols, telles que les techniques culturales simplifiées ou le non-labour dans certaines conditions.

Les prairies permanentes représentent également un stock de carbone à préserver. De plus, leur destruction peut libérer des quantités d’azote très importantes (allant jusqu’à 700 kg l’année suivant la destruction). Le maintien et la préservation des prairies permanentes sont imposés par l’Europe via le verdissement de la Politique Agricole Commune.

Le retournement d’une prairie permanente est totalement interdit, depuis le 1er janvier 2015, pour 91 des 240 sites Natura 2000 de Wallonie. Pour les autres, le retournement de prairie permanente est un acte soumis à autorisation. Il est primordial de maintenir ces dispositions voire de les renforcer en les généralisant à l’ensemble de sites Natura 2000.
En matière de gestion forestière et plus particulièrement de plantation, des subventions locales sont accordées aux propriétaires privés afin d’assurer le renouvellement des peuplements résineux et feuillus\(^\text{18}\).

Enfin, plus de la moitié de la forêt wallonne est certifiée PEFC (Programme for the Endorsement of Forest Certification Schemes, ou Programme de Reconnaissance de Systèmes de Certification Forestière en français), qui est un système de certification mondial qui garantit la gestion durable des forêts. Actuellement, 300.000 ha sont certifiés en Wallonie\(^\text{19}\) (271.340 ha de forêts publiques wallonnes et 30.437 ha de forêts privées), ce qui représente 54% des forêts wallonnes. La quasi-totalité des forêts publiques sont déjà certifiées.

- **Gérer les forêts wallonnes dans le but de favoriser leur adaptation aux changements climatiques**

Les thématiques du quatrième Accord-cadre de recherche et de vulgarisation forestière\(^\text{20}\) sont notamment l’évaluation des risques et gestion des forêts dans le cadre des changements globaux, les outils d’analyse prospective pour la forêt wallonne élaborés a partir des données de l’Inventaire Permanent des Ressources Forestières de Wallonie et la conception de systèmes sylvicoles innovants. La poursuite du financement de ces recherches est prévue par le Code Forestier.

Plusieurs recherches et réalisations sont directement liées au maintien et à l’amélioration à long terme des ressources forestières, dans un contexte de changement climatique.

Les thématiques de ces recherches reflètent les principes et lignes directrices exposés ci-dessous.

L’adéquation des essences aux stations afin d’améliorer la productivité mais aussi la résilience des forêts. En 2017, une nouvelle version du Fichier écologique des essences\(^\text{21}\) a été publiée et constitue un outil d’aide à la décision pour la plantation, au service des gestionnaires d’espaces forestiers et naturels.

L’intensité de prélèvement de biomasse doit être compatible avec le maintien à long terme de la fertilité des sols. Ceci sera notamment déterminé par une quantification des exportations minérales accompagnant les exploitations.

La réaction des arbres aux stress répétés (attaques d’insectes, gels, sécheresses, qualité du sol, ...) est actuellement étudiée, afin de mieux gérer les forêts, par

\(^{21}\) https://www.fichierecologique.be
exemple, en diminuant la densité des arbres pour un meilleur accès aux ressources (eau et éléments nutritifs) ou en les plantant dans des stations adaptées, en les mélangeant avec d’autres espèces (mixité).

Des recherches sont en cours concernant des espèces qui devraient mieux supporter un climat plus sec et plus chaud, notamment en examinant les réactions des essences plantées dans les arboretums aux différents stress climatiques (sécheresse, gelées, etc.), en vue d’identifier des essences plus résistantes aux sécheresses et produisant un bois de qualité, afin de maintenir une diversité d’espèces et une bonne production de bois dans le futur.

La modélisation de la croissance des forêts se poursuit, afin d’identifier les modes de gestion les plus appropriés, qui confèreront une meilleure résilience aux forêts compte tenu des incertitudes environnementales à venir. Ceci concerne par exemple la gestion forestière des peuplements en mélange, visant notamment à augmenter la résilience des forêts de hêtre, de chêne, avec des forêts plus diversifiées et mieux adaptées aux changements climatiques.

Les épidémies de scolytes (Ips typographae et Chalcographe) sont particulièrement importantes ces dernières années, suite aux chablis liés aux tempêtes Eleanor et David en 2017 et aux conditions climatiques de 2018 et 2019, particulièrement favorables à la prolifération de l’insecte. Dans ce contexte, l’Observatoire Wallon de la Santé des Forêts22 créé en 2011 a pour objectif de centraliser les données et les connaissances relatives à la santé des forêts relative aux niveaux des territoires wallon et bruxellois. Il a pour missions principales la production d’un bilan périodique de la santé des peuplements forestiers, la détection et l’identification des insectes et champignons pathogènes responsables des maladies, la participation à l’élaboration de cartes de risques biotiques et abiotiques sur base de l’état de vulnérabilité des essences forestières et des stations des risques sanitaires en forêt et enfin la centralisation des connaissances suffisantes pour mettre en œuvre une lutte coordonnée en situation de crise sanitaire.

Pistes d’évolution

- Bilans énergétiques, de gaz à effet de serre et de NH3 à l’échelle de l’exploitation agricole (outil DECIDE)

L’AwAC et le CRAw ont collaboré pour développer un calculateur permettant de réaliser un bilan précis des consommations énergétiques et des émissions de gaz à effet de serre et de NH3 à l’échelle de l’exploitation. L’outil DECIDE est encore en cours de développement mais est déjà disponible pour être déployé en Wallonie. Une fois les bilans calculés, des séries de recommandations spécifiques peuvent ainsi être énoncées et discutées, notamment avec les conseillers agricoles, pour

optimiser l’utilisation d’intrants (énergétiques et autres), limiter les pertes (impact économique) et réduire l’impact environnemental des activités de la ferme.

- **Boisement, la plantation d’éléments ligneux et l’agroforesterie**

Le potentiel de boisement ou d’afforestation est relativement limité en Wallonie. La forêt couvre déjà plus d’un tiers de la superficie de la région. Cependant, il reste un potentiel dans les superficies agricoles : réimplanter des haies aux bords des parcelles, planter des arbres dans les prairies, développer les pré-vergers. Ceci peut contribuer à relever différents défis : production de biomasse, accroissement des puits de CO₂, renforcement du maillage écologique, amélioration de la biodiversité et de la résilience de l’espace rural aux impacts des changements climatiques (voir section adaptation aux changements climatiques).

- **Le développement d’un modèle agricole plus respectueux de l’environnement**

Les résultats de l’« étude relative à la mise en œuvre d’un passage du modèle agricole à un modèle sans produits phytopharmaceutiques et à usage limité d’engrais chimiques », dont le Gouvernement a pris acte le 14 mars 2019, offrent des pistes de réflexion à moyen terme.

- **Développement du processus de biométhanisation dans le secteur agricole**

La biométhanisation est une technologie qui permet de transformer la matière organique en gaz méthane et engrais. A la ferme, ces matières organiques sont disponibles à toutes les étapes de l’utilisation de la matière ; tant d’origine animale que végétale. L’intérêt particulier vient également de la qualité de l’engrais produit par ce processus : l’azote qui permet la fertilisation des sols est partiellement minéralisé par le procédé. Dans sa déclaration de Politique Régionale, le Gouvernement se propose d’encourager la bio-méthanisation pour une meilleure gestion des déchets, en soutenant les agriculteurs produisant de l’énergie de manière significative pouvant alimenter un réseau local (village, hameau, entreprise).

Le chapitre “3.1.2. Energie renouvelable” propose des mesures à cet égard.

ii. Secteur de la mobilité et du transport

Le secteur du transport en général et de la mobilité en particulier sera étudié en trois axes qui doivent permettre de définir au mieux le paysage du transport de personnes et de marchandises à l’horizon 2030 et servir de base à des objectifs à plus long terme.
La démarche globale vise à permettre une contrainte sur l’évolution à la hausse du parc de véhicule en offrant des alternatives efficaces pour le déplacement de personnes et de marchandises selon un principe global de type « Avoid-Shift-Improve »

Axe 1 : Rationaliser les besoins en mobilité (Avoid)

La volonté de « réduire nos besoins en déplacements individuels et de marchandises » est une orientation essentielle pour rendre durable le système de transport. Pour ce faire, le Gouvernement wallon a élaboré une vision de la mobilité – FAST - à l’horizon 2030. Cette vision ambitionne une réduction de la mobilité des personnes, de 5% en 2030 par rapport à 2017. Les mesures concrètes pour arriver à cet objectif doivent être développées, à travers la stratégie régionale de mobilité notamment via un renforcement de mesures de type télétravail, covoiturage, etc.

En parallèle, des actions liées à la politique d’aménagement du territoire pourraient permettre la localisation des implantations d’activités afin de minimiser les besoins de déplacements (de biens et de personnes), de favoriser le recours aux modes les plus durables (voir axe 2 ci-dessous), ou encore de répondre à l’allongement des trajets automobiles ou l’augmentation des volumes de marchandises transportés.

Les politiques de promotion des circuits courts et de la production locale, le développement de l’économie circulaire et de l’économie de la fonctionnalité, peuvent également contribuer à réduire les besoins de transport de marchandises (tkm).

Axe 2 : Encourager les transferts modaux (Shift)

La vision mobilité FAST (voir ci-après) du Gouvernement wallon, qui est au cœur du projet du PWEC, repose sur un transfert du transport de marchandises par camion vers le rail et la voie d’eau d’ici 2030. De même pour la mobilité des personnes, la voiture recule sensiblement au profit des transports en commun et des modes actifs (marche, vélo, etc.).

Cette vision propose un renversement complet de la tendance observée ces dernières décennies. Des mesures nouvelles pour diminuer la demande tant pour le transport de personnes que de marchandises seront nécessaires pour atteindre les objectifs fixés.

Il est donc nécessaire de mettre en place un plan d’aménagement en faveur des modes actifs couvrant l’ensemble du territoire wallon, assurant le financement et la construction d’infrastructures et cheminement cyclo-pédestres sécurisés et un aménagement rééquilibré de l’espace public en faveur de ces modes actifs. Le Gouvernement s’est engagé à assurer un engagement budgétaire pour le vélo à hauteur de 20 euros par habitant par an.
Ces mesures sont précisées dans la stratégie régionale de mobilité et devront être traduite entre autres dans un nouveau Plan Wallonie Cyclable. L’adoption de ce dernier est prévue, dans le cadre de la Déclaration politique du Gouvernement wallon, pour mi-2021.

Concernant les transports en commun, principalement sur les axes structurants et les grandes infrastructures de transport (train, tram, métro), l’offre sera étoffée et articulée à l’approche par « mobipôles » visant à mettre en œuvre le concept de « MaaS – Mobilité as a Service » qui forment une maille.

Une attention spécifique sur les options multimodales appliquées au transport de marchandises doit être apportée en renforçant les options de massification du transport (ferroutage par exemple) et en diminuant la demande sur les « last miles » soit via le recours à une micrologistique adaptée ou en raccourcissant les circuits logistiques.

Axe 3 : Améliorer les performances des véhicules (Improve)

L’électrification croissante du parc de voitures à l’horizon 2030 sera renforcée. En parallèle, l’orientation des achats de véhicules neufs vers des modèles moins énergivores (moins puissants, plus légers) sera favorisée dans une approche qui aurait également des bénéfices en termes de réduction des accidents sur les routes.

Une attention particulière devra être apportée afin de permettre une meilleure accessibilité de l’ensemble de la population à ces nouvelles technologies principalement pour répondre au mieux aux surcoûts actuellement constatés sur les véhicules à motorisation alternative. Cette attention devra suivre l’évolution des coûts constatés dans ces technologies.

Plus avant, un dialogue avec les autres niveaux de pouvoir est nécessaire pour :

- la définition d’une limite maximale d’émissions GES pour les nouvelles mises en circulation, avec abaissement progressif du niveau maximal autorisé. Une telle approche est moins coûteuse pour les pouvoirs publics et plus sûre en termes de résultats.
- une réflexion sur la fiscalité des carburants de substitution (gaz et électricité).
- sur les politiques fiscales liées à la mobilité et au transport de personnes (principalement en ce qui concerne les véhicules de société).

Au-delà, une réflexion plus globale devra être portée sur l’efficacité globale des véhicules et de leur usage à l’instar, pour le transport de marchandises, de la démarche « Lean and Green ». Cette amélioration peut passer par des mesures d’accompagnement à la conduite ou de mesures préventives d’entretien de
véhicules (comme le décalaminage des moteurs). La réflexion sur cette efficience doit pouvoir également traduite à l’échelle de la chaine logistique.

Une attention particulière doit également pouvoir être apportée sur l’empreinte carbone des véhicules et de leur approvisionnement lorsqu’il s’agit de carburants alternatifs. Le recours à de l’électricité renouvelable ou à du biogaz sera renforcé. Une réflexion globale sur les carburants à faible teneur en carbone sera mise en place principalement pour les modes de transport où l’électrification est difficilement envisageable.

Mobilité - FAST

Pour rappel, la vision FAST vise à promouvoir les objectifs de fluidité, accessibilité, sécurité, santé à travers le transfert modal.

Pour concrétiser cette vision, c’est le modèle de la multimodalité qui doit être développé. Compte tenu des enjeux et défis actuels, le modèle combinant efficacement les divers modes est le seul qui permettra une accessibilité maximale en s’attaquant simultanément aux symptômes directs que sont les accidents et encombrements et aux symptômes indirects que sont la pollution et la paralysie de l’économie.

Ce choix se traduit par la volonté de modifier fortement et structurellement les parts modales des différents modes tant pour les personnes que pour les marchandises, soit d’enclencher le transfert modal.

La stratégie relative au transfert modal repose sur la mise en œuvre quasi simultanée de 8 chantiers indissociables les uns des autres. Comme annoncé dans la vision FAST, ces 8 chantiers relèvent de trois axes : la gouvernance de la mobilité, l’offre de mobilité et la demande de mobilité. Aucun de ces chantiers n’est superflu et chaque chantier constitue une condition nécessaire à la réussite, laquelle doit se mesurer en termes économique, social et environnemental sur le court, le moyen et le long terme.

Ces 8 chantiers sont les suivants :

1. Mettre en place une gouvernance et un pilotage unifiés et cohérents de la mobilité à l’échelle régionale ;
2. Anticiper et gérer les impacts sociétaux des ruptures technologiques et d'usage ;
3. Augmenter l'offre de déplacement mutualisé et focaliser chaque mode sur sa zone de pertinence ;
4. Créer les conditions d’attractivité de la comodalité des personnes et des marchandises ;
5. Améliorer l'efficacité et la sécurité des systèmes de transport grâce aux développements technologiques ;

6. Organiser le territoire en vue de réduire le volume de déplacements ;

7. Orienter les pratiques vers une mobilité durable par une fiscalité intelligente et ciblée. L'objectif, à terme, est d’encourager des voitures moins puissantes et moins lourdes et, dès-lors, moins polluantes ;

8. Informer, former et accompagner les citoyens et les acteurs de la société à la mobilité durable.

FAST 2030 fait l’objet d’un plan d’actions : la Stratégie Régionale de Mobilité (SRM). Cette SRM doit, à terme, permettre de donner une ligne de conduite globale pour atteindre les objectifs. Un premier volet de cette SRM a été approuvé par le Gouvernement wallon le 9 mai 2019\(^\text{23}\) pour ce qui est du volet sur le transport de personnes. Le volet relatif au transport de marchandises doit encore être finalisé. Ces textes ont la vocation de pouvoir évoluer afin de répondre au mieux aux objectifs liés à FAST.

Certaines actions relatives à la SRM de personnes ont déjà été entamées

A. Développement du concept de MaaS – les mobipôles

Les « mobipôles » offriront divers services et permettront l’échange modal pour les personnes, avec, selon les cas, des parkings notamment de covoiturage, des abris vélo sécurisés, des arrêts de bus, de tram ou des accès aux gares mais également avec des services divers tels que des lignes nouvelles de bus rapides de type BHNS (Bus à Haut Niveau de Service), des espaces de co-working parfaitement connectés, des locations de vélos, des stations de recharge en lien avec la stratégie « post diesel » (électrique, gaz, etc.), des véhicules partagés, etc.

Ces unités multimodales devront être positionnées adéquatement en fonction des infrastructures existantes mais également raccordées :

- d’une part, au réseau télécom développé par la Sofico ;
- d’autre part, aux zones d’habitat et aux pôles d’activité économique, par la création de raccordements accessibles aux modes actifs et par la création ou le renforcement de bandes bus permettant une circulation rapide des nouvelles lignes de BHNS.

Les mobipôles visent avant tout à promouvoir la « smart mobilité » c'est-à-dire un système incluant à la fois les solutions et les comportements de mobilité durables, efficients et innovants.

Un « mobipôle », c'est :

1. Un lieu physique qui dispose d’une offre de mobilité structurante, c'est-à-dire avec un niveau de service attractif. On parle d’offre structurante lorsque la fréquence, la vitesse et le niveau de confort du service représentent des solutions potentiellement attractives par rapport à l’usage traditionnel qui est fait de la voiture (càd un usage en sous capacité). Cette offre consistera dans le développement de formes de services dont les caractéristiques seront particulièrement orientées vers les attentes des futurs utilisateurs.

2. Le mobipôle est aussi un lieu dont l’accessibilité a été prévue pour un maximum de personnes et types de solutions. Cet aspect du concept vise à éviter de disperser les moyens voués à l’infrastructure sur l’ensemble du territoire. En désignant intelligemment la position des mobipôles, on doit permettre de minimiser les moyens dédiés aux infrastructures.

3. C’est enfin un lieu voué à devenir un lieu de transit. Il faut donc trouver des moyens de le rendre attractif en tant que tel. Il faut que « le détour en vaille la peine ». De ce fait, il peut être pertinent d’y développer certains services comme du « co-working ». Le but n’est toutefois pas que les personnes y séjournent (puisqu’elles doivent justement y trouver une solution le plus vite possible) mais qu’elles y transitent. Dès lors, les services que l’on trouvera là-bas devront précisément être pensés dans cet esprit en donnant la priorité à des services qui « ajoutent une valeur au détour » (ex : co-working, car wash, un point relai pour la livraison de marchandises). C’est-à-dire que le détour par ce point doit permettre aux utilisateurs de leur éviter un autre déplacement.

4. Il est important de noter que ce concept n’a de sens et donc de chance de succès que s’il est accompagné par des mesures qui visent à le rendre « relativement incontournable ». Ces mesures ne portent donc pas seulement sur l’offre, elles portent aussi sur la demande. Il sera ainsi nécessaire de prévoir des incitants à la smart mobilité (par ex : déductibilités fiscales pour les voitures mises en partage…) parallèlement aux actions sur l’offre pour s’assurer que le succès soit au rendez-vous.

5. Si l’expérience s’avère probante, il sera également utile de coupler les réflexions mobilité et énergie, tant en lien avec la production qu’avec la consommation. En effet, ce croisement est susceptible de générer lui aussi des avantages économiques et environnementaux.

Le concept du mobipôle s’inscrit dans le concept global de la « smart mobility », qui comprend le développement et/ou l’amélioration de solutions de
communication numériques pour l’information en temps réel, les réservations de solutions, les échanges entre covoitureurs…

Il nécessitera et promouvra les « NWOW » (new way of working). En effet, l’idée est non seulement de permettre le télétravail dans le mobipôle mais également de le promouvoir durant les déplacements.

B. Métro de Charleroi

L’achèvement des travaux et la prolongation de l’antenne du métro léger de Charleroi jusqu’au site du futur Grand Hôpital de Charleroi (GHdC) a été étudié par l’OTW. Ce dossier doit s’intégrer avec le dossier, en cours à l’OTW, de rénovation des rames du métro.

C. TEC, BHNS, vélos, véhicules partagés, verdissement de la flotte

Dans le cadre de FAST, 5 chantiers semblent importants :

1. **Covoiturage** : création de parkings de covoiturage aux échangeurs autoroutiers, mais également sur d’autres sites potentiels et création de bandes de circulation réservées aux covoitureurs.

 Une liste de critères de création de parkings de covoiturage existe au SPW MI. Cette dernière sera utilisée pour recenser les conditions nécessaires pour le bon fonctionnement et l’implantation des parkings de covoiturage.

 Cette liste sera concertée avec les services du SPW MI et de la Sofico afin de déterminer la faisabilité des aménagements des sites proposés.

 En ce qui concerne les parkings de covoiturage au droit des échangeurs autoroutiers, une liste a été établie au sein du SPW MI et sera concertée avec la Sofico.

2. **Lignes de bus** : renforcer les lignes existantes, créer de nouvelles lignes principalement rapides dotées de bus à haut niveau de Service (BHNS) et destinées à desservir rapidement des pôles d’attractivité ou des lieux d’échanges modaux. Les montants seront consacrés aux frais de fonctionnement de ces nouvelles lignes et à l’achat de nouveaux bus, dans le cadre du verdissement de la flotte. Ce principe figure par ailleurs dans le nouveau Contrat de Service Public de l’OTW.
3. **Bandes bus et sites propres, nouveaux park&ride, afin d’augmenter l’attractivité et la vitesse commerciale des autobus.**

Les services techniques de l’OTW croisent les besoins exprimés par les services chargés de l’exploitation, avec les dernières propositions du « Plan Infrastructures 2019-2024 ».

Ces croisements se font également en interaction avec la mise en place de plateformes multimodales.

Les interventions de ce volet de la présente fiche viendront compléter ce qui est prévu dans ces deux autres plans (fiche 2a et plan infrastructures 2019-2024)

4. **ITS (Intelligent Transport System)** : compléter le dossier PEREX 4.0 en cours afin de gérer au mieux et de façon modernisée les infrastructures routières et fluviales. Fournir des services innovants liés aux différents modes de transport et à la gestion de la circulation sur routes et voies navigables, en vue de faire un usage plus sûr, plus coordonné et plus « intelligent » des réseaux de transport. Ce volet « ITS » concerne notamment l’accueil des futurs véhicules autonomes et la gestion des données (big data, open data, etc...).

Des propositions concrètes de la part des services de l’OTW seront présentées lors de la prochaine réunion du groupe de travail.

L’objet des dossiers de ce volet de la fiche viendront donc compléter ce qui est déjà prévu au niveau de la Sofico : marché de contrôle-sanctions du « covoiturage » publié fin juin, marché du SAGT (Système d’Aide à la Gestion du Trafic), et pour le domaine des voies hydrauliques, le cahier des charges (automatisation des écluses) devrait être publié cet été.

5. **Vélo et marche** : doter la Wallonie des infrastructures complémentaires nécessaires et adapter les infrastructures existantes. Pour le vélo, les infrastructures devront s’articuler autour du RAVeL qui doit constituer le réseau express wallon des déplacements doux et qui continuera à se développer. Son accessibilité sera renforcée pour lui permettre d’accueillir plus de déplacements quotidiens vers les écoles et entreprises, mais également vers les plateformes multimodales. La coordination entre les plateformes multimodales (mobipôles) et la mobilité douce est assurée par un groupe de travail spécifique.

Les appels à projets à destination des communes seront étendus pour relier les quartiers aux pôles scolaires et d’activités et augmenter l’accessibilité du RAVeL. Celui-ci sera par ailleurs mieux entretenue avec l’acquisition du matériel spécifique.

Un projet de renforcement de l’éclairage sur les RAVeL est également envisagé.
Par ailleurs, le développement de nouvelles pistes cyclables et l’entretien des existantes seront favorisés le long des voiries régionales. Pour la marche, la création, la réhabilitation et l’entretien des cheminements piétons seront développés.

Actuellement les besoins en modes doux sont croisés avec les besoins routiers du futur Plan Infrastructures 2019-2024, afin d’optimiser les investissements régionaux.

Ce volet s’articulera également avec le plan wallon cyclable (WaCy 3.0).

D. Mise à gabarit par dragage des voies navigables

Afin de continuer à encourager et à optimaliser le transfert modal de marchandises de la route vers la voie d’eau, il est nécessaire d’intensifier le dragage des voies navigables et de mettre à gabarit les voies navigables. Pour se faire, un mécanisme de financement via un partenariat public-privé est envisagé.

En première approche, ce partenariat devrait permettre un dragage jusqu’aux vieux-fond et vieux-bord des 450 km de voies navigables wallonnes en 2024, ainsi que d’organiser et d’effectuer l’évacuation des sédiments. L’évacuation des sédiments inclut le dragage proprement dit, les transports, les déshydratations, les traitements, les valorisations et les éliminations en centre d’enfouissement technique, le cas échéant. Par ailleurs, le partenariat prévoira un système visant à favoriser la valorisation des sédiments, et notamment en matière de recherche et le développement. Un objectif de pourcentage de valorisation des sédiments sera fixé.

Afin de définir les objectifs spécifiques et la méthodologie à appliquer pour la concrétisation de ce partenariat, une étude d’opportunité de montage financier pour les travaux de dragage et de gestion des sédiments est en cours de réalisation.

E. Amélioration de la mobilité pour soutenir la croissance de l’activité à long terme autour des aéroports

Les deux pôles aéroportuaires wallons (Charleroi et Liège) sont majeurs pour le développement socio-économique de la Wallonie. Il est donc important de pouvoir renforcer leur accessibilité.

A cet effet, grâce aux budgets prévus, les services concernés travaillent à :

- L’identification des besoins en infrastructures (amélioration et création) en lien avec les zones d’activité économique autour des aéroports.

- La recherche d’une mobilité alternative à la voiture (Bus, vélo et train). A ce titre, la démarche envisagera également la possibilité de création, à terme, d’une navette autonome pour la desserte des aéroports.
- Dans le cas particulier de Charleroi, ce dossier s’inscrira, d’une part dans la dynamique « catch » de redéploiement économique et, d’autre part, dans la démarche de la création d’une liaison ou navette « bus » au départ des gares de Fleurus et Luttre (lesquelles seront réaménagées) vers et depuis l’aéroport et l’aéropole.

- Dans le cas particulier de Liège, ce dossier intégrera la démarche éventuelle du fret ferroviaire à grande vitesse (Carex).

- La priorisation, la planification et la réalisation des chantiers.

- Une attention spécifique sur la mobilité douce, partagée et sur les changements de carburants (Fuel-Switch) sera également envisagée.

Verdissement du parc de véhicules

Les principales mesures peuvent être synthétisées :

- Le déploiement des infrastructures sera soutenu dans le cas du LNG/CNG et de l’hydrogène où le différentiel de coût technologique actuel doit pouvoir être soutenu par des mécanismes adaptés ;

- Afin de favoriser le biogaz servant à produire du CNG et du LNG, il est nécessaire de soutenir la filière. La Déclaration de Politique régionale wallonne prévoit la mise en œuvre de ce soutien. Une réflexion devra être entamée avec les autorités fédérales en vue d’assurer un taux d’incorporation de biogaz dans le secteur du transport ;

- Points de rechargement pour véhicules électriques : afin d’inciter les acteurs publics et privés à déployer des points de rechargement électriques sur tout le territoire, le gouvernement wallon entend continuer à lancer des appels à projets. Le mécanisme privilégié est celui d’avances récupérables. Une attention spécifique devra être assurée pour garantir une couverture suffisante.

- Hydrogène : un mécanisme de soutien à l’installation des infrastructures pourrait être mis en place.

iii. Secteur des gaz fluorés

Accords sectoriels volontaires

La mesure consiste à mettre en place un accord volontaire avec le secteur de la distribution alimentaire portant sur la réduction de ses émissions de GES. Tant l’usage de gaz fluorés que la consommation d’énergie sont visés. La mesure s’inscrit au départ dans un contexte de restriction de plus en plus importante de l’utilisation des gaz HFC lié au règlement européen 517/2014.

Dans une logique d’accords volontaires, les entreprises (ou les fédérations) pourraient se voir assigner des obligations de résultats plutôt que des obligations de moyens. Il paraît, en effet, plus efficace de fixer des objectifs de réductions d’émissions de GES (avec, sans doute, un focus spécifique sur les HFC) aux
entreprises (ou aux fédérations) en leur laissant la liberté de mettre en place les moyens qui leur semblent les plus adaptés pour arriver à ces cibles. Cette option semble, a priori, préférable à l’imposition de méthodes de travail à respecter ou encore de choix technologiques auxquels recourir.

Dans le cadre d’accords volontaires HFC, des trajectoires de réduction des émissions de HFC (en travaillant, entre autres, sur une diminution des taux de fuites) pourraient être fixées. L’objectif général de cet accord volontaire est de réduire les émissions de gaz fluorés de 90% en 2030, à priori par rapport à 2005. L’année de référence de ce calcul sera un des éléments de discussion, afin de ne pas pénaliser des entreprises qui auraient déjà investi récemment dans une réduction des HFCs.

A ce stade, l’objectif qui pourrait figurer dans l’accord volontaire se décline en 3 objectifs secondaires :

- Agir au niveau des gaz réfrigérants des installations ;
- Améliorer l’efficacité énergétique des espaces commerciaux de distribution alimentaire ;
- Développer des sources d’énergies renouvelables afin d’atteindre le « zéro émissions » de GES pour tout nouveau bâtiment commercial de distribution alimentaire à partir de 2025.

Soutien aux entreprises en vue du remplacement de leur matériel

L’installation d’équipements de réfrigération utilisant des réfrigérants alternatifs est déjà actuellement éligible aux aides à l’investissement. Néanmoins :

- le secteur de la distribution, principal émetteur de HFC, est exclu ;
- le principe de calcul des aides est complexe car il s’agit de prendre en charge une partie du surcoût d’investissement par rapport à la technologie de référence (qui doit donc être définie)

L’objectif de la nouvelle mesure serait donc :

- d’inciter les exploitants à passer à une solution sans HFC ;
- de simplifier le mécanisme d’aides actuel et envisager l’octroi d’une aide spécifique au secteur de la distribution ;
- d’octroyer une subvention d’autant plus élevée que les installations contiennent une quantité importante de gaz à effet de serre fluorés, exprimée en t éq. CO₂ ;
- de s’assurer que lors de l’opération de remplacement, le gaz fluoré soit effectivement récupéré ;
Renforcement des formations à l’utilisation des réfrigérants alternatifs / technologies alternatives

Cette mesure vise la préparation des contenus de cours relatifs aux nouveaux réfrigérants/technologies (incluant notamment/en particulier les éléments ayant trait à la sécurité). Cette action devrait par ailleurs développer un coaching des centres de formation en Wallonie. Il convient, dans un premier temps, de s’orienter vers des formations sur l’utilisation du CO$_2$, et ensuite de préparer les contenus de formation portant :

- sur le propane et les gaz à effet de serre fluorés à faible potentiel de réchauffement global mais inflammables ;
- sur l’ammoniac.

Il conviendra en outre de permettre aux centres de formation de disposer d’infrastructures techniques adéquates, permettant de former les techniciens à ces nouvelles technologies.

iv. Aménagement du territoire

Le Schéma de Développement du Territoire (SDT)24 identifie le climat et l’énergie comme deux des dix enjeux qu’il entend relever sous l’angle de l’aménagement du territoire.

La vision portée par le SDT vise notamment à utiliser les transitions énergétiques et climatique comme des leviers territoriaux majeurs. Au travers du SDT, le Gouvernement vise à établir une organisation des territoires urbains en réseau et le développement de nouveaux modes d’organisation de l’économie, tels que l’économie de proximité et l’économie circulaire. La volonté est de transformer la manière d’appréhender le territoire et les relations entre fonctions, activités et ressources.

Le SDT identifie vingt objectifs ambitieux à l’horizon 2030 et à l’horizon 2050. De manière transversale, l’ensemble de ces objectifs participe à la lutte contre le réchauffement climatique, l’efficience énergétique et l’amélioration de la qualité de l’air.

Le SDT, qui reste un outil indicatif pour les orientations territoriales wallonnes, permettra de baliser les grandes décisions d’aménagement du territoire tout en garantissant le respect des quatre priorités du Code du développement territorial à savoir :

- la lutte contre l’étalement urbain et l’utilisation rationnelle des territoires et des ressources ;
- le développement socio-économique et l’attractivité territoriale ;

- la gestion qualitative du cadre de vie ;
- la maîtrise de la mobilité ;

Les options prises par le SDT pourront être déclinées au sein des outils d’aménagement du territoire élaborés à l’échelle locales et supra locales. Ces outils ne pourront s’écarter des objectifs fixés par le schéma.

Concrètement, le projet de SDT propose une série de mesures fortes visant à une préservation des richesses territoriales de la Wallonie et à une meilleure protection de son environnement. Parmi ces mesures, citons, notamment :

- la réduction de la consommation des terres non artificialisées à 6 km²/an d’ici 2030, soit la moitié de la superficie consommée actuellement et tendre vers 0 km²/an d’ici 2050 ;
- l’implantation, en 2030, de 50% des nouveaux logement au sein des cœurs des villes et des villages et tendre vers 75% à l’horizon 2050 ;
- Développer 30 % des nouvelles zones d’activité économique sur des terres déjà artificialisées, notamment par la réhabilitation de friches ou sur des zones déjà consacrées par les outils planologiques à l’horizon 2030 et 100 % à l’horizon 2050. Tendre vers une plus grande densité d’occupation des espaces destinés à l’activité économique par un coefficient d’occupation au sol compris entre 50 et 70 %, hormis les espaces non valorisables tels que les périmètres et les dispositifs d’isolement et les zones de compensation environnementale. Autoriser, dans le respect des dispositions du schéma régional de développement commercial, les ensembles commerciaux d’une surface commerciale nette de plus de 2.500 m² uniquement dans les centralités et plus en périphérie, sauf à démontrer qu’une installation en périphérie ne porte pas préjudice aux centralités urbaines environnantes.;
- Créer des espaces verts privés (à rétrocéder le cas échéant aux pouvoirs publics) à raison d’un minimum de 10% de la superficie dans tous projets d’urbanisation de plus de 2ha ;
- Créer une centaine de plateformes ou unités d’échanges modal d’ici 2030 et couvrir l’ensemble du territoire à l’horizon 2050 ;
- Reconvertir 100ha de site à réaménager par an jusqu’à 2030 ;
- Augmenter la part modale en faveur des transports en commun et partagés (en km parcourus). Elle est de 13 % en 2017 et devrait tendre vers 25 % en 2030 et vers 50 % en 2050.
- Augmenter la part modale en faveur du vélo (en km parcourus). Elle est de 1 % en 2017 et devrait tendre vers 5 % en 2030 et vers 10 % en 2050.
- Réduire la part modale de la voiture individuelle (en km parcourus). Elle est de 83 % en 2017 et devrait tendre vers 60 % en 2030 et vers 40 % en 2050.
- Créer 1000 km de pistes cyclables sécurisées à l’horizon 2030, et 2000 km à l’horizon 2050.
- Augmenter le nombre moyen de personnes par véhicule de 1,3 en 2017, à 1,8 en 2030 et 3 en 2050.

Ces 5 derniers points sont explicités dans le chapitre relatif à la mobilité.
Mise en œuvre d'une économie circulaire et promotion des circuits courts en Région wallonne

Le Plan Wallon des Déchets-Ressources (PWD-R), adopté en mars 2018, comprend plus de 700 actions, dont le but est de prévenir l'apparition, réutiliser, trier, recycler ou encore valoriser les déchets. Des actions clés seront mises en œuvre notamment pour accélérer la transition vers une économie circulaire ; certaines sont déjà en cours. En effet, il est important que des solutions adaptées soient facilement accessibles à tous, que les initiatives d’économie circulaire soient encouragées et que différents types d’incitants soient disponibles pour les porteurs de projet. La Région Wallonne a également le rôle d’éviter les lock-in et de développer les infrastructures publiques, lorsque cela s’avère nécessaire.

Développement de l’offre circulaire et locale

Le PWD-R prévoit une série de mesures destinées à stimuler l’offre durable. Au niveau du cadre, le plan prévoit de « définir ou adapter le cadre légal utile à l’expansion de projets d’économie circulaire et d’économie de la fonctionnalité ». Des mesures visent à accompagner les entreprises en les informant :
- « identifier de nouveaux gisements de croissance de l’économie circulaire » et « mettre en œuvre un système de veille des modèles émergents et économiquement viables, et sensibiliser les acteurs économiques sur les opportunités, notamment en proposant de nouvelles formations en management et mobilisant l’enseignement dans cette dynamique » ;
- « sensibiliser les entreprises industrielles à l’éco-design/éco-conception des produits pour faciliter leur démontage et leur recyclage »
- « animer les acteurs économiques du domaine en favorisant les rencontres et les échanges d’informations entre les producteurs et l’industrie du recyclage (identification des matières dans les produits, identification des produits pour lesquels des avancées doivent être trouvées en matière d’éco-conception, …) ».

Les synergies sont également visées par le PWD-R, dans une logique territoriale (écologie industrielle et territoriale) :
- « stimuler la symbiose industrielle, c’est-à-dire la transformation des sous-produits d'un secteur en matières premières pour un autre secteur » ;
- « élaborer des normes de qualité applicables aux matières premières secondaires

25 http://economiecirculaire.wallonie.be
pour renforcer la confiance des opérateurs au sein du marché unique » ;
- « mener des actions d’animation économique sur le terrain en vue d’inciter les entreprises à concrétiser des partenariats de valorisation et d’échange de sous-produits ou de flux divers (eau chaude, gaz...) dans des zones territoriales cohérentes » ;
- « pour les produits organiques, encourager les projets multi-acteurs (agriculteurs, pouvoirs locaux, entreprises...) de biométhanisation ».

Outre l’accompagnement, la Région wallonne met en place des instruments financiers soutenant et incitant les différents acteurs vers plus de circularité : appels à projets "déchets", chèques "économie circulaire", dispositif Easy’Green, programme NEXT, subsides en matière de prévention et de gestion des déchets, ou de réutilisation.

En outre, le plan vise également l’économie de fonctionnalité (ex : facilitation et encouragement de la location de biens matériels plutôt que leur achat), et l’allongement de la durée d’usage des biens (ex : renforcement et soutien du réseau des « Repair Cafés », création de nouvelles ressourceries).

- La Wallonie veillera également à l’encadrement des filières de circuits courts dans le secteur agro-alimentaire, en soutenant la mise en œuvre de coopératives agro-alimentaires pour leur donner une masse critique garantissant leur viabilité commerciale.

Prévoir et animer une « communauté des acteurs de l’économie circulaire », une plateforme de synergies avec l’ensemble des acteurs, à mettre en place entre les acteurs wallons privés, collectivités territoriales, associatifs et universitaires, entreprises, centres techniques, centres de recherche, Pôle Greenwin pour développer des projets collaboratifs innovants. Cette plateforme multisectorielle permettra d’identifier et de faciliter les opportunités de collaboration concernant les ressources disponibles avec les entreprises actives dans la production, la transformation, la distribution des produits et les entreprises actives dans l’offre de services, principalement dans les secteurs à haute valeur ajoutée tels que la (dé-)construction, les équipements électriques & électroniques.

vi. Activation des comportements pour réduire les émissions de gaz à effet de serre

Le succès des campagnes de lutte contre le changement climatique dépend de plusieurs facteurs, dont de la réceptivité des citoyens. Par exemple, le public n’aura pas forcément recours aux aides proposées, ou adaptera son comportement sur du court-terme uniquement. Un recours aveugle à des campagnes d’éducation et de sensibilisation, ou à des incitants financiers sur du court-terme, ne permettra pas des changements comportementaux dans la durée. Les approches intégrées de marketing sociocommunautaire (initiatives communautaires de nature à
promouvoir le changement de comportement) offrent un grand potentiel pour favoriser les comportements responsables26, et devront être envisagées.

Ces campagnes de comportement pourront cibler quelques thématiques phares, telles que l’éco-consommation (voir section 3.1.1.v), les comportements d’économies d’énergie dans le résidentiel (voir section 3.2.5), la mobilité, ou encore, la pollution numérique, qui constitue une forme de consommation énergétique cachée et souvent négligée27, alors qu'une croissance est attendue dans la consommation électrique des centres de données au cours des années à venir.

Plusieurs plateformes, actions et campagnes de sensibilisation ou de changement de comportements sont instaurées au niveau institutionnel28, complétées par une multitude de structures soutenues par ailleurs29. Afin d’assurer un accès rapide à information favorable aux comportements vertueux, la Région wallonnes veillera à l’intégration des plateformes, actions et campagnes existantes pour permettre à chacun de trouver les informations qu’il cherche et les réponses à ses questions de manière simple et rapide.

Ces approches devront être permises par une rationalisation et une optimisation des outils existants en concertation et avec l’appui des acteurs du secteur. Ces derniers doivent en effet pouvoir, au travers de leurs actions, dispenser l’information attendue.

\section*{vii. Adaptation}

La Wallonie comme les autres régions du monde est affectée par les changements climatiques : accroissement global de la température, modification du régime de précipitations, événements extrêmes, ... ces changements amènent une série d’impacts : augmentation du risque d’inondation et d’érosion des sols, multiplication des vagues de chaleur et des sécheresses, arrivée et propagation de maladies, ... Tous ces impacts ont été identifiés, évalués et quantifiés en 2011 et 2014 grâce à des études d’évaluation des impacts et de la vulnérabilité de la Wallonie aux changements climatiques (ECORES & TEC, 2011) (ICEDD, 2014)30.

27 En 2016, les centres de données représentaient en Wallonie 7,7 % de la consommation électrique totale du secteur tertiaire.
28 Guichets Energie, plateforme "Les wallons ne manquent pas d’air", vidéos "Les mini-influenceurs", ...
29 par exemple : IEW, Goodplanet, Ecoconso, Réseau transition, passeurs d’énergie, portail consocollaborative.com, Greencaps challenges
Sur base de ces évaluations, des premières mesures d’adaptation ont été identifiées et rassemblées dans le PACE 2016-2022. Elles couvrent différents secteurs, s’intègrent dans des outils existants (plans de gestion des risques inondations, observatoire wallon de la santé des forêts, ...) mais aussi sont à la base de nouveaux outils (démarche ‘adapte ta commune’, outil de planification destiné aux pouvoirs locaux).

Il est évident que ces mesures ne doivent pas s’arrêter après 2022 et qu’une continuité doit être assurée dans le cadre de ce plan à l’horizon 2030. Certaines mesures existantes sont donc poursuivies, d’autres actualisées et enfin de nouvelles pistes de mesures sont également identifiées.

C’est notamment le cas avec les plans de gestion de risque inondation deuxième cycle 2022-2027 qui prendront en compte les changements climatiques.

Dans le domaine forestier, le Code wallon forestier énonce toute une série de mesures pour promouvoir le développement durable des bois et forêts. Cela implique plus particulièrement le maintien d’un équilibre entre les peuplements résineux et les peuplements feuillus, et la promotion d’une forêt mélangée et d’âges multiples, adaptée aux changements climatiques et capable d’en atténuer certains effets. Des recommandations aux gestionnaires forestiers ont été publiées en 2017 afin de proposer des actions concrètes qui tiennent compte de l’évolution climatique. Les résultats de la recherche forestière ont pu alimenter ces recommandations. L’observatoire wallon de la santé des forêts assure une veille et un suivi sanitaire des peuplements forestiers en collaboration avec les pays voisins. Il a été particulièrement actif ces dernières années lors des attaques des scolytes dans les Ardennes (en 2018, en Wallonie, on comptait 500.000 m³ d’arbres infectés. Ce chiffre risque de doubler et d’atteindre le million de m³ en 2019). Enfin, plusieurs recherches sont actuellement menées en vue de l’adaptation des forêts au changement climatique (voir section 3.1.1.i)

L’agriculture a été particulièrement affectée par les changements climatiques ces dernières années. La sécheresse de 2017 a été reconnue comme calamité agricole sur l’ensemble des communes wallonnes et l’estimation du montant total des dégâts globaux s’élève à près de 130 millions d’euros. La sécheresse a également été remarquée en 2018 et se poursuit en 2019. La recherche agronomique doit être soutenue et orientée vers des pratiques culturales, des sélections variétales ou même de nouvelles cultures pour s’adapter à ces conditions plus sèches et au stress hydrique ainsi qu’aux maladies et nuisibles favorisés par les changements climatiques. A l’inverse, les fortes précipitations provoquent des coulées boueuses, une érosion et donc une perte en sol. La cellule GISER du SPW ARNE travaille avec les communes et les agriculteurs pour lutter contre l’érosion, le ruissellement et les coulées boueuses. Entre 2011 et 2015, elle a été sollicitée plus d’une centaine de fois sur environ 400 sites différents. On note déjà une centaine d’aménagements dont notamment plus de 8km d’éléments linéaires (bandes enhérbées, fascines, talus, fossé, ...) qui ont été implantés sur cette période pour réduire l’érosion et les coulées boueuses.
Les vagues de chaleur affectent la population et particulièrement les personnes plus vulnérables. Le plan wallon ‘Fortes chaleur et pics d’ozone’ est déclenché régulièrement lors des périodes estivales pour rappeler et communiquer les bons gestes à avoir, encadrer plus particulièrement les personnes âgées parfois isolées et sensibiliser de manière générale. Le plan wallon environnement santé 2009-2023 intègre également les changements climatiques. On y retrouve des mesures directement liées comme par exemple, le monitoring et la lutte contre les moustiques exotiques, les maladies transmises par les tiques, la surveillance des spores et pollens, ... Ce sont autant d’éléments qui sont influencés par les changements climatiques.

En matière d’énergie, les changements climatiques vont influencer le niveau de production et le mode de consommation parallèlement aux efforts entrepris dans le cadre du présent plan. La Wallonie collabore à ce sujet avec les autres régions pour estimer quels seront les impacts des changements climatiques sur la sécurité d’approvisionnement en énergie (voir mesure nationale).

La biodiversité et les services rendus par les écosystèmes sont fortement impactés par les changements climatiques déjà fragilisés par ailleurs par la fragmentation des habitats, la disparition d’espèces, l’arrivée d’espèces invasives, ... il est donc essentiel de poursuivre et renforcer les efforts pour développer les réseaux écologiques. Il s’agit d’un ensemble d’écosystèmes naturels et semi-naturels, mais aussi d’habitats de substitution, susceptibles de rencontrer les exigences vitales des espèces et de leurs populations. Ces zones d’infrastructures vertes sont aussi nécessaires à la production d’une large diversité de services écossystémiques visant à réguler les effets des activités humaines. Le développement de trames bleues et vertes permet de relier les habitats et renforcer les écosystèmes pour les rendre plus résilients face notamment aux impacts des changements climatiques.

La réimplantation de haies en milieu rural, la plantation d’arbres, l’agroforesterie ont un grand rôle dans l’adaptation de par leurs multiples effets positifs : en milieu rural, obstacles pour les coulées boueuses, zone de rétention et d’abris pour différentes espèces, production de biomasse à vocation énergétique (valorisation des taille de haies) ou production de bois d’œuvre ou production horticole, contribution au stockage de carbone, augmentation de la biodiversité, production de zones d’ombres pour les élevages, structuration du paysage, ... En milieu urbain aussi il y a de la place pour l’infrastructure verte qui permettrait de mieux gérer les eaux pluviales et contribuer à lutter contre l’ilot de chaleur urbain, comme par exemple : la végétalisation des toitures, la plantation d’arbres et/ou la perméabilisation des sols (notamment les surfaces de parkings, ...). L’aménagement du territoire doit être réfléchi en connaissant les impacts des changements climatiques sur le territoire. Cela est valable aussi bien au niveau régional qu’au niveau communal. Il y a d’ailleurs une collaboration grandissante entre ces deux niveaux dans le cadre de la Convention des Maires qui, outre les aspects énergétiques et de réduction des émissions de gaz à effet de serre, intègre aussi l’aspect adaptation aux changements climatiques. Un outil a été développé en Wallonie, la « démarche adapte ta commune » pour aider les communes à
prendre connaissance et évaluer les impacts des changements climatiques sur leur territoire. Cet outil a été diffusé grâce aux campagnes POLLEC et est donc utilisé par un certain nombre de communes. Il contient une série de fiches actions et d’exemple de réalisations pour inspirer les communes et échanger les connaissances afin d’aider le développement d’actions sur le terrain. Il est bien sûr prévu de continuer à promouvoir cet outil et de l’améliorer de façon continue.

Concernant la gestion des risques et catastrophes, la Wallonie collabore avec les autres entités belges dans le cadre d’action de Sendai pour la réduction des risques de catastrophe 2015-2030. Des collaborations sont nées au sein de la plateforme nationale Sendai belge rassemblant différents experts de différentes disciplines (Centres de crise, la Défense, ...). Des experts sur l’adaptation aux changements climatiques sont également présents pour faire le lien avec les impacts des changements climatiques.

Des collaborations transfrontalières sont également assurées notamment dans le cadre du Benelux. Des ateliers spécifiques sur les impacts des changements climatiques sur la santé, le transport et l’énergie ont permis d’échanger les informations et d’apprendre des uns des autres. Il est prévu que cette collaboration se poursuive durant les prochaines années.

Enfin, des actions de communication, de sensibilisation et d’éducation aux changements climatiques sont régulièrement menées pour conscientiser les stakeholders et le grand public des impacts des changements climatiques et des actions à mener pour s’adapter. Citons à titre d’exemple des dossiers pédagogiques sur le climat, destinés aux élèves de 5e et 6e primaire. Ces dossiers ont déjà été envoyés aux écoles et sont disponibles sur internet et sur simple commande.

Le tableau suivant reprend les 15 actions d’adaptation à mettre en œuvre.
<table>
<thead>
<tr>
<th>Actions</th>
<th>Secteurs</th>
<th>Impacts en lien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Plans de gestion des risques inondations 2e cycle 2022-2027</td>
<td>Aménagement du territoire, Agriculture, Gestion de l’eau</td>
<td>Inondations</td>
</tr>
<tr>
<td>2 Code wallon forestier, gestion durable de forêts adaptées aux changements climatiques</td>
<td>Forêts</td>
<td>Fragilisation des peuplements forestiers</td>
</tr>
<tr>
<td>3 Recommandations aux gestionnaires forestiers</td>
<td>Forêts</td>
<td>Fragilisation des peuplements forestiers</td>
</tr>
<tr>
<td>4 Observatoire wallon de la santé des forêts</td>
<td>Forêts</td>
<td>Maladies et parasites</td>
</tr>
<tr>
<td>5 Recherche agronomique et forestière</td>
<td>Recherche, Agriculture, Forêts</td>
<td>Augmentation de la température, sécheresse,...</td>
</tr>
<tr>
<td>6 Conseils et avis de la cellule GISER</td>
<td>Agriculture</td>
<td>Erosion et coulées boueuses ; Inondations</td>
</tr>
<tr>
<td>7 Plan vague de chaleur et pics d’ozone</td>
<td>Santé</td>
<td>Vague de chaleur</td>
</tr>
<tr>
<td>8 Plan environnement santé 2019-2023</td>
<td>Santé</td>
<td>Accroissement des maladies vectorielles et respiratoires</td>
</tr>
<tr>
<td></td>
<td>Sécurité d’approvisionnement en énergie</td>
<td>Energie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
|10 | Développer les réseaux écologiques et les trames vertes et bleues | Biodiversité, Aménagement du territoire | Inondation, vague de chaleur, sécheresse, ...
|11 | Plantations, boisement et Agroforesterie | Agriculture, Aménagement du territoire | Erosion, Inondations, Sécheresse, Vague de chaleur |
|12 | Soutien et support à la Convention des Maires | Villes et Communes | Inondation, vague de chaleur |
|13 | Gestion des crises et lien avec la réduction des risques et catastrophes | Transversal | |
|14 | Communiquer, sensibiliser, éduquer sur les impacts des changements climatiques et l’adaptation | Transversal | |
|15 | Collaboration transfrontalière | Transversal | |

Tableau 16 : Tableau synthétique des 15 actions d’adaptation
3.1.2. Energie Renouvelable

i. Promotion de l’électricité renouvelable

Mesure de soutien : mécanisme de certificats verts

Le principal outil de soutien au développement de l’électricité renouvelable, en Wallonie, est le mécanisme de certificats verts, consistant en une aide à la production des installations.

Sur base d’une évaluation interne du mécanisme actuel, le Gouvernement a estimé que l’adaptation du mécanisme existant était la solution la plus pertinente et pragmatique pour prolonger le développement des énergies renouvelables au moindre coût afin d’atteindre les objectifs fixés. Cependant d’importantes améliorations devaient être mises en place, comme décrites ci-dessous.

Diminution progressive du mécanisme de soutien

Le mécanisme de soutien est maintenu aussi longtemps que les technologies que la Wallonie souhaite développer présentent un déficit compétitif face aux installations classiques (fossiles et nucléaires) sur le marché de l’électricité.

La révision du mécanisme permet un soutien décroissant pour les nouveaux projets, via une diminution progressive des enveloppes de certificats verts additionnels.

Limitation de l’impact sur la facture des consommateurs

Des balises sont définies pour le financement du soutien pour chaque catégorie de consommateur. L’impact du mécanisme de soutien fait l’objet d’un suivi pour les consommateurs et prévoit des mécanismes d’adaptation (répartition différente du financement entre consommateurs ou répartition temporelle des coûts).

Ces balises sont fixées compte tenu des enjeux en matière de compétitivité des entreprises et de participation des particuliers aux investissements nécessaires à la transition énergétique.

Evolution vers des appels à projet

Le mécanisme de certificats verts sera progressivement combiné à une mise en compétition des projets et des filières permettant de répondre aux objectifs d’efficience et d’intégration au marché, tout en s’inscrivant dans le cadre européen qui vise une intégration plus forte au marché. Le recours aux appels à projets permet notamment de mieux contrôler le rythme de développement, de mettre les projets en concurrence et de cibler les projets à développer. Les grands principes suivants seront suivis :
• utilisé au-delà de certaines puissances pour certaines technologies ;
• plafond prédéfini (en cas d’absence de concurrence) ;
• multi-critères (environnementaux et sociaux).

Les appels à projets ne sont envisagés, dans un premier temps, que pour des installations de grande puissance. La mise en concurrence entre technologies ne sera mise en pratique que dans un second temps, lorsque leur compétitivité sera quasi acquise.

A terme, le mécanisme d’appels à projet pourra être étendu à la production et la distribution de chaleur d’origine renouvelable.

Extension du mécanisme et intégration du coût-vérité

Un soutien spécifique à la production d’électricité par récupération de la chaleur fatale sera mis en place (à l’instar de la cogénération fossile de qualité).

Progressivement, le mécanisme ne soutiendra plus que la production d’électricité renouvelable afin de mettre en pratique le principe du coût-vérité (celui qui est directement concerné contribue à supporter la charge) et d’ainsi réduire la charge pour le consommateur d’électricité :

- la production de chaleur de la cogénération sera soutenue par un autre mécanisme de soutien spécifique à la chaleur renouvelable ;
- Pour la biométhanisation, le mécanisme de soutien à la production d’électricité sera évalué afin d’étudier des pistes d’améliorations visant à ne prendre en charge financièrement que la production d’énergie renouvelable

Evolution du niveau de soutien

L’évolution du niveau de soutien en fonction de paramètres liés au marché (principalement le prix de l’électricité, des certificats verts et des labels de garantie d’origine) sera adaptée afin de permettre une forte réactivité, notamment en cas de hausse du prix de l’électricité.

Autres mesures de soutien à la production d’électricité renouvelable

Amélioration et sécurisation du cadre général

Afin de rendre les technologies renouvelables plus compétitives, il y a lieu de réduire les risques associés à leur déploiement ainsi que les charges diverses (procédures administratives, procédures de permis harmonisées, régime de garantie, ...).

Mise en place d’une politique photovoltaïque

Le photovoltaïque est une technologie d’avenir représentant un haut degré d’intégration (matériaux, infrastructures) avec une diminution drastique des coûts de production qui en font une solution tant résidentielle qu’industrielle.

En lançant des projets pilotes au niveau de bâtiments (par exemple dans le secteur public), la Wallonie veillera au déploiement du BIPV (Building Integrated Photovoltaics) sur son territoire.

Autres mesures de soutien

D’autres mesures, articulées avec le mécanisme certificats verts, permettent également le déploiement de l’électricité renouvelable en Wallonie :

- Aides à l’investissement, dont les aides aux entreprises pour la protection de l’environnement et l’utilisation durable de l’énergie
- Soutien pour les industries pour réaliser des études de faisabilité pour installer de la production renouvelable (accords de branche)
- Soutien à la recherche, projets pilotes
- Un service d’experts renouvelables et cogénération est opérationnel depuis janvier 2019
- Les guichets de l’énergie

Etablissement d’un cadre favorable aux communautés d’énergie renouvelable

La Région wallonne a agi en tant que précurseur en initiant dès septembre 2018 une réflexion sur l’encadrement de nouvelles formes de partage d’énergie. La réforme a abouti, le 30 avril 2019, par le vote d’un cadre législatif visant à favoriser l’émergence de communautés d’énergie renouvelable (CER) tout en anticipant la transposition de l’article 22 de la directive 2018/2001 relative à la promotion de l’électricité produite à partir de sources renouvelables du 11 décembre 2018.

Le développement et l’intégration des énergies renouvelables, l’évolution et l’adaptation des modes de production et de consommation de l’énergie, la transition énergétique ou encore la compétitivité énergétique des entreprises sont autant d’objectifs qui ont sous-tendus cette réforme d’envergure.

En effet, la consommation collective d’énergie verte produite localement permettra notamment de limiter l’injection d’électricité sur le réseau de transport local et de distribution en favorisant les circuits courts. Elle permettra également de pallier aux difficultés d’intégration au réseau des énergies dites intermittentes par une autoconsommation collective locale et raisonnée pouvant être accompagnée de moyens de stockage adaptés aux besoins particuliers et collectifs.

Les grandes lignes consacrées dans le décret sont les suivantes :
- Plusieurs participants peuvent se regrouper pour partager et synchroniser leur production et consommation d’énergie renouvelable au sein d’un même périmètre situé au niveau local via le réseau public ;
- La CER doit avoir pour but de produire, consommer, stocker et vendre de l’électricité renouvelable en vue de procurer des bénéfices environnementaux, sociaux et économiques tant à ses membres qu’au niveau local ;
- La CER doit être autorisée par la CWaPE après avis du GRD et respecter un certain nombre de conditions et obligations, notamment au niveau du seuil d’autoconsommation collective ;

Lorsque la CER respecte les conditions spécifiques auxquelles elle est soumise, un tarif spécifique pour l’utilisation du réseau tel que déterminé par la CWaPE lui sera appliqué. Ce tarif doit veiller à assurer l’équilibre entre la solidarité de la couverture des coûts du réseau ainsi que de la contribution aux taxes, surcharges et autres frais régulés et l’intérêt de participer à une telle opération. La RW réaffirme ainsi l’importance des principes de solidarité et de mutualisation des frais de réseau.

Différentes combinaisons et scénarios sont possibles. Plusieurs universités wallonnes travaillent d’ailleurs d’ores et déjà activement sur divers projets pilotes expérimentaux.

Autoconsommation individuelle et collective d’électricité renouvelable

Aucune barrière n’existe dans la réglementation wallonne concernant l’autoconsommation individuelle d’énergie renouvelable, celle-ci étant déjà autorisée.

Mesures réglementaires

Lever l’insécurité juridique liée à l’octroi de permis pour le secteur éolien

Afin de lever les freins au développement de l’éolien en Wallonie, le Gouvernement wallon a identifié 15 mesures pour favoriser le développement de la filière éolienne.

En vue de la mise en œuvre de ces mesures, plusieurs engagements des parties prenantes figureront par ailleurs dans la Convention de Transition Ecologique. Ce mécanisme de Conventions de Transition écologique pourrait être prévu dans le Décret-Programme (en vigueur depuis le 18/10/2018). S’apparentant à un Green Deal, la Convention de Transition écologique devrait permettre la mobilisation des différents acteurs (privés, publics, associatifs, citoyens, …) dans un processus dynamique et collaboratif visant à stimuler la transition énergétique dans les projets de développement éolien.
La Pax Eolienica :
- Vise à simplifier les démarches administratives des promoteurs éoliens et à améliorer les outils existants afin de rémésier au « taux de mortalité » des projets actuels ;
- Traduit la volonté du Gouvernement wallon d’associer pleinement tous les acteurs concernés autour des enjeux liés à la poursuite du développement de la production d’énergie renouvelable par l’implantation d’éoliennes sur le territoire wallon ;
- Scelle les engagements des parties en présence.

Les mesures de la Pax eolienica portent sur les conditions sectorielles, le suivi acoustique, les adaptations juridiques nécessaires dans le code de l’Aménagement du territoire, notamment en matière de permis, les adaptations du décret électricité permettant le déploiement de micro-réseaux, la simplification administrative, les critères aéronautiques, l’accès aux données cadastrales, l’acceptation sociale, la taxation.

En contrepartie, le Gouvernement a créé un Fonds Biodiversité, qui sera alimenté par les promoteurs éoliens à l’occasion de la mise en œuvre des compensations environnementales, et dont les recettes seront affectées à des projets de restauration de la biodiversité.

ii. Promotion de la chaleur renouvelable

Plusieurs mesures sont nécessaires pour encadrer le déploiement de la chaleur et du froid renouvelable :

- Mise en œuvre d’un plan de transition de la chaleur renouvelable établissant la liste des alternatives technologiques pour de multiples applications notamment en vue du remplacement du chauffage aux produits pétroliers par des alternatives moins carbonées (pompes à chaleur, solaire thermique, réseau de chaleur, géothermie, pellets/plaquettes, biogaz, biofuel, petit réseau de gaz, …). Ce plan sera élaboré conjointement avec le rapport actualisé de l’article 14 de la directive efficacité énergétique
- La Wallonie appuiera le développement des diverses formes de chaleur renouvelable, en fonction de leurs avantages respectifs, via un ou des mécanismes appropriés. Dans le résidentiel, voir les mesures relatives au bâtiment ;
- Suppression de toute forme d’aide aux chaudières fossiles pour autant qu’il existe des alternatives.
Dispositif pour les petites installations

Pour les particuliers, il est utile de maintenir un régime de primes spécialement orientées vers les consommateurs résidentiels pour les inciter à s'équiper de pompes à chaleur, de chaudières utilisant des ressources moins carbonées que les fossiles ou de panneaux solaires thermiques, éventuellement couplés à des dispositifs de stockage de chaleur. Le montant de la prime sera déterminé sur base du surcoût de production par rapport à une situation de référence.

Pour les bâtiments les moins performants, il sera veillé à prioritairement réaliser des travaux en matière d’efficacité énergétique, tel que le prévoit d’ailleurs le mécanisme de primes actuel.

Afin d’atteindre les objectifs renouvelables de la Wallonie tout en respectant la qualité de l’air, La mise en place des mesures seront envisagées pour visant à inciter au renouvellement des systèmes de chauffage individuels biomasse ou des poêles buches peu performants par des poêles à pellets ou des poêles permettant de réduire drastiquement le rejet des s particules. Une des mesures pourrait être, par exemple, la mise en place d’un système de primes au remplacement et tubage par des professionnels qualifiés Une distinction devra être faite pour les primes destinées aux publics précarisés. Une surprime sera octroyée pour des appareils les plus performants.

Dans le tertiaire public, il est utile de promouvoir l’installation de systèmes renouvelables dans les bâtiments publics afin de mettre en évidence le caractère exemplaire.

Mesures réglementaires

La création d’un décret chaleur doit permettre :
- De lever les freins au développement des réseaux de chaleur,
- De permettre la rentabilisation de l’injection de biogaz dans les réseaux.

Le décret chaleur pourrait aller jusqu’à intégrer des objectifs à long terme afin de donner une réelle impulsion à l’essor de l’énergie thermique en Wallonie.
iii. **Mesures transversales**

Mise en place d’une obligation de renouvelable dans les bâtiments neufs

Par ailleurs, une obligation de pourcentage minimal d’énergie renouvelable\(^{31}\) dans les nouvelles constructions et les rénovations importantes sera instaurée.

Pour rappel, la réglementation européenne (article 15,§4 de la Directive 2018/2001) rappelle que « dans leurs réglementations et leurs codes en matière de construction, ou par tout moyen ayant un effet équivalent, les États membres imposent l’application de niveaux minimaux d’énergie provenant de sources renouvelables dans les bâtiments neufs et dans les bâtiments existants qui font l’objet de travaux de rénovation importants, dans la mesure où cela est techniquement, fonctionnellement et économiquement réalisable, compte tenu des résultats du calcul des niveaux optimaux en fonction des coûts effectué en application de l’article 5, paragraphe 2, de la directive 2010/31/UE, et dans la mesure où cela n’a pas d’incidence négative sur la qualité de l’air intérieur. Les États membres permettent que ces niveaux minimaux soient atteints, notamment grâce à des réseaux de chaleur et de froid efficaces ayant une part notable d’énergies renouvelables et de chaleur et de froid fatals récupérés. »

Dans le cadre des travaux relatifs à l’évolution de la réglementation sur la PEB (Décret « PEB »), ces obligations seront précisées avec une attention spécifique aux publics les plus fragiles.

Mise en place d’une approche intégrée de la qualité

Dans le cadre de la transposition de la Directive EC 2009/28, la Région wallonne a mis en place un système de certification des installateurs de systèmes d’énergie renouvelable. Cette certification est octroyée à la suite d’une formation suivie par les installateurs visant à améliorer leurs connaissances théoriques et pratiques.

Conscient de l’importance de la mise en œuvre, la Région a souhaité aller plus loin dans le processus de qualité, en développant un label de qualité pour les entreprises.

Les objectifs de ce processus sont multiples :

- Créer une dynamique relative à l’approche qualité ;
- Sensibiliser le grand public sur l’intérêt de miser sur du matériel de qualité ;
- Proposer un mécanisme par le biais duquel le citoyen investisseur dans des énergies renouvelables recevra des garanties de qualité ;

\(^{31}\) Cette imposition permet par ailleurs de répondre à l’article 15§4 de la directive 2018/2001 : « Dans leurs réglementations et leurs codes en matière de construction, ou par tout autre moyen ayant un effet équivalent, les États membres imposent l’application de niveaux minimaux d’énergie provenant de sources renouvelables dans les bâtiments neufs et dans les bâtiments existants qui font l’objet de travaux de rénovation importants, dans la mesure où cela est techniquement, fonctionnellement et économiquement réalisable. »
• Soutenir les entreprises engagées dans un processus « qualité » en leur donnant une visibilité.

Cette démarche doit être pérennisée. Il conviendra d’instaurer un lien entre l’octroi des primes et la certification/labellisation.

Encadrement de l’utilisation de la biomasse

En avril 2016, un groupe de travail (Comité transversal Biomasse), composé d’acteurs de différentes administrations, a remis, après consultation des acteurs, un rapport au Gouvernement wallon portant sur les recommandations pour l’élaboration d’une stratégie wallonne « Biomasse énergie ».

La stratégie « Biomasse-Energie » s’inscrit dans la bioéconomie qui concerne l’ensemble des usages de la biomasse. Ces objectifs pourront être atteints grâce à la contribution de chaque sous-filière en tenant compte des principales techniques de valorisation énergétique de la biomasse et leurs différentes catégories. Seront privilégiés et encouragés, les procédés de valorisation qui présentent les meilleures performances environnementales et énergétiques. L’usage de la biomasse sous forme énergétique se fera en cohérence avec les travaux menés par le Gouvernement en tenant compte des enjeux cardinaux suivants : durabilité, conflits d’usages, intégration à la feuille de route bioéconomie et respect de la cohérence entre vecteurs.

C’est dans cette optique que le Gouvernement wallon souhaite approuver un cadre régissant l’usage de la biomasse (toutes sources confondues) à des fins énergétiques.

Par ailleurs, le travail de mise en réseaux des acteurs sera poursuivi, de la manière la plus intégrée possible.

La procédure de réservation pour les projets de production d’électricité renouvelable à partir de biomasse ou de biogaz nécessite l’avis du Comité Transversal Biomasse avant la demande de réservation des CV. Son rôle est de donner un avis sur la durabilité et la hiérarchie des usages des intrants biomasse de ces projets. A chaque changement dans le plan d’approvisionnement, le porteur projet resolicite l’avis du Comité.

Biométhanisation

Par souci de durabilité, la biométhanisation à partir de coproduits issus des cultures à des fins non énergétiques ou basée sur le traitement de déchets, agricoles, des ménages, ou industriels, sera privilégiée. D’après l’étude de gisement, il ressort notamment que ces « biodéchets » sont disponibles en Wallonie en quantité suffisante pour permettre d’atteindre les objectifs fixés.

Lorsque les installations de biométhanisation requièrent des cultures intercalaires voire énergétiques pour stabiliser leur production, ces cultures doivent s’accompagner de mesures en termes de bonnes pratiques.
Un cadre sera établi pour la biométhanisation agricole et traitera notamment de la gestion des déchets ; la gestion des digestats ; l’encadrement des cultures énergétiques (tandis principales qu’intercalaires) ; les obstacles réglementaires ; …

Une réforme relative au secteur du gaz issu de sources d’énergie renouvelables (ci-après, « gaz SER ») a été adoptée en 2018 dans le but de soutenir et d’accélérer le développement de la filière de biométhanisation. Cette réforme prévoit que les producteurs de gaz issus de sources d’énergie renouvelables, qui sont produits et injectés en Région wallonne sur le réseau de distribution ou de transport de gaz naturel, reçoivent des labels de garantie d’origine à raison d’un label par MWh injecté exprimé en pouvoir calorifique supérieur. Ces labels garantissent l’origine renouvelable du gaz produit. Ils peuvent ensuite être revendus à des producteurs d’électricité verte qui utilisent du gaz naturel comme combustible pour leur installation de cogénération fossile, en vue de leur permettre d’obtenir un taux d’octroi de certificats verts additionnels. Ce taux d’octroi additionnel est soumis à réservation, l’installation de production d’électricité doit bénéficier par elle-même du droit à l’octroi de certificats verts, et le contrat de fourniture de labels entre le producteur de gaz SER et le producteur d’électricité verte doit être de deux ans au moins.

Ces mesures contribuent également aux efforts menés dans le secteur agricole (voir 3.1.1.i. Secteur agricole et de la forsterie)

Utilisation du biogaz

Une discussion sera entamée avec les autres niveaux de pouvoirs afin de promouvoir le biogaz comme biocarburant. A terme, la part d’incorporation du biogaz dans le transport doit pouvoir être favorisée via des normes à l’instar de ce qui est en place pour les biocarburants liquides.

Pour l’utilisation du biogaz à des fins de production de chaleur :

- l’injection de biométhane dans le réseau de gaz naturel sera soutenue via le mécanisme de soutien à la chaleur et un cadre rendant techniquement possible l’injection ;
- la valorisation sur site du biogaz non épuré sera soutenue via le mécanisme de soutien à la chaleur ;
- l’utilisation du biogaz par les producteurs d’électricité verte est encouragée au moyen de labels de garantie d’origine, échangeables contre des certificats verts additionnels.

Cogénération

En matière de cogénération, le progrès attendu s’appuie sur les vecteurs suivants :

- Amélioration des rendements énergétiques ;
- Valorisation énergétique de sous-produits ;
- Augmentation de l’utilisation en interne de l’énergie produite ;
- Développement d’unités de cogénération et amélioration des unités existantes pour la ressource locale ;
Actuellement, plusieurs projets d’installations de cogénération par gazéification de bois sont visés par la rubrique suivante du permis d’environnement : « 40.20.01.02 Production ou transformation de gaz à l’exclusion des gaz de raffinerie, lorsque la capacité de production est supérieure à 100 Nm³/h (classe 1) ». Ce type d’installation est donc versé presque automatiquement en classe 1 (production de gaz), ce qui est un frein majeur au développement de ce type de cogénération, pour des installations dans lesquelles le gaz est consommé sur place pour produire de l’électricité et de la chaleur. Ce classement est inapproprié par rapport aux impacts réels de la technologie de gazéification de bois sur l’environnement. En effet, la cogénération permet de diminuer la quantité de CO₂ émise, par rapport à des systèmes de production séparés de chaleur et d’électricité.

Une révision des rubriques du permis d’environnement est donc nécessaire afin de faciliter le développement de ce type d’installation.

Chauffage

En matière de chauffage, la contribution du secteur s’appuie sur les éléments suivants :

- L’augmentation des rendements, permettant une amélioration de l’utilisation du bois pour les chauffages d’appoint (augmentation des rendements de 10 à 20 %) ;
- Des changements technologiques en cas de remplacement d’installations par des professionnels qualifiés ;
- Le développement de l’utilisation durable de la biomasse énergie pour des bâtiments communaux et des chaufferies collectives.

A noter qu’en matière de production de pellets, les unités actuelles produisent en deçà de leur capacité alors que le secteur pourrait fournir plusieurs GWh primaires supplémentaires s’il atteignait sa capacité maximale. Il faut toutefois considérer que cette augmentation de production pourrait entraîner des tensions supplémentaires dans l’approvisionnement de l’industrie locale de trituration.

En matière de qualité de l’air, différentes pistes sont à analyser : l’utilisation de filtres, de combustibles de qualité, de matériel moderne et l’entretien régulier.

Utilisation de la biomasse

Le recours à des matières premières locales, voire issues de productions propres, apparaît comme un facteur de stabilité important de la filière biomasse-énergie de Wallonie car :

- il offre à priori une meilleure garantie en termes d’approvisionnement ;
- il permet de s’affranchir de la concurrence sur les ressources ;
- il permet une certaine maîtrise des prix ;
• il offre les conditions d’une meilleure traçabilité ;
• il limite les transports et réduit dès lors son impact global.

Il ne paraît pas opportun de rendre obligatoires et contraignantes les priorités d’usage de la biomasse au niveau de la Wallonie : l’alimentation (humaine et animale), la production de fibres (textiles), la chimie verte ou les biomatériaux, pour ne citer qu’eux, sont tous nécessaires. De plus, les usages et leurs proportions respectives évoluent au fil du temps. Par contre, il faut reconnaître et identifier les usages qui ne sont pas souhaitables pour exclure tout soutien et encourager l’usage efficient de la ressource.

Dans ce cadre, les outils proposés par le GT « Bois-Energie » doivent permettre de garantir une utilisation durable de l’ensemble de la biomasse :

• Une utilisation en cascade du bois non contraignante
• Une liste négative de produits exclus du régime de soutien : « bois rond »
• Une balise économique par les mécanismes de soutien
• Une définition de plans d’approvisionnement et un contrôle strict de leur pertinence et des impacts potentiels à l’échelle du bassin
• Il est proposé certaines pistes d’amélioration des procédés de vérification de la durabilité, dont la certification de biomasse durable par des organismes tiers permettant de faciliter le suivi administratif et les échanges commerciaux. Pour les industriels, une certification internationale aurait l’avantage d’être reconnue dans plusieurs pays, ce qui n’est pas le cas actuellement.

Communication, information, sensibilisation

Il est également nécessaire de communiquer, de manière thématique notamment sur la bonne utilisation des appareils biomasse. Cette mesure est en lien avec la mesure comportement décrite dans le chapitre 3.2.

La Région peut également soutenir les initiatives visant à l’organisation de groupements d’achats collectifs afin de diminuer les prix des installations et d’assurer un suivi qualité, lorsque cela s’avère adapté à la technologie.

De même, la Région peut valoriser la participation de particuliers dans des projets locaux de production d’énergie (ex : gaz vert).
3.2. **Efficacité Énergétique**

3.2.1. **Système d’obligation en matière d’efficacité énergétique et mesures alternatives (art. 7 dir EE) : Mise en place un mécanisme d’obligation complémentaire aux mesures alternatives pour 2021-2030**

Mécanisme existant

L’article 7 de la directive européenne 2012/27 "Efficacité Énergétique" impose à la Région wallonne la mise en place d’un mécanisme de réduction annuelle de 1.5 % des ventes d’énergie (c’est-à-dire de la consommation finale) sur la période 2014-2020.

La méthode de calcul (annexe V)

Objectif = atteindre au 31 décembre 2020 un **objectif cumulé de nouvelles EE** (la répartition sur la trajectoire est libre)

<table>
<thead>
<tr>
<th>Année</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1.5 %</td>
</tr>
<tr>
<td>2015</td>
<td>3 %</td>
</tr>
<tr>
<td>2016</td>
<td>4.5 %</td>
</tr>
<tr>
<td>2017</td>
<td>6.0 %</td>
</tr>
<tr>
<td>2018</td>
<td>7.5 %</td>
</tr>
<tr>
<td>2019</td>
<td>9.0 %</td>
</tr>
<tr>
<td>2020</td>
<td>10.5 %</td>
</tr>
<tr>
<td>Total</td>
<td>42.0 %</td>
</tr>
</tbody>
</table>

Durée de via

- Additionnalité (au-delà des normes EU + pas double comptage)
- EE matérielle et démontrables
- Système indépendant de mesure, vérification et contrôle
- 2 périodes + rapportage annuel

Il s’agit d’une obligation de moyens pour atteindre un résultat, qui se traduit par un objectif wallon d’économies d’énergie cumulées sur la 1ère période (2014-2020) de 25.675 GWh, soit l’ajout de 917GWh de nouvelles économies chaque année.

Pour ce faire, l’Europe propose 2 options (éventuellement combinables) :

- un mécanisme d’obligations ;
- un ensemble de mesures alternatives.

En 2013, le Gouvernement Wallon a opté pour le recours exclusif aux mesures alternatives plutôt que pour l’introduction d’une obligation de type certificats blancs.

Vu la difficulté à atteindre l’objectif de la 1ère période (2014-2020) via des mesures alternatives, la Wallonie doit prendre des mesures pour mettre en place un mécanisme complémentaire aux mesures alternatives pour 2021-2030.
Extension du mécanisme à l’horizon 2030

La révision de la directive efficacité énergétique a étendu et renforcé l’obligation pour la période 2021-2030. La Wallonie doit mettre en place un mécanisme garantissant la réalisation de nouvelles économies d’énergie au stade de l’utilisation finale de 970GWh supplémentaires chaque année.

La comptabilisation des économies d’énergie réalisées pour remplir cette obligation doit répondre à des critères très stricts :

- Méthodologie de mesure ou d’évaluation solide, cohérente et documentée
- Prise en compte de la durée de vie de l’impact de chaque mesure individuellement
- Eligibilité de la mesures prise en compte (ciblant la baisse de la consommation finale, pas l’effacement par production renouvelable)
- Additionnalité de la mesure par rapport aux normes et aux standards européens et à l’évolution spontanée
- Matérialité (contribution réprésentative de la mesure au passage à l’action) de chaque mesure retenue
- Exigences de qualité minimales à la mise en œuvre
- Pas de double comptage d’impact lorsque plusieurs mesures concourent à la réalisation de la même action

Le monitoring, la vérification et le rapportage des économies d’énergie annuelles joue donc un rôle primordial dans l’obligation article 7. La création d’un comité transversal article 7 chargé de garantir la cohérence des mesures et le respect des critères d’éligibilité, de mettre en place la collecte et la vérification des impacts du mécanisme, d’assurer le suivi et le rapportage des résultats et de proposer de nouvelles mesures le cas échéant sera envisagée.

Par ailleurs, les mesures contributrices envisagées pour atteindre l’objectif wallon sont les suivantes :

- Mise en œuvre de la stratégie long terme de rénovation des bâtiments wallons, dont toutes les mesures sont éligibles au mécanisme article 7, tant dans le secteur résidentiel que tertiaire public et privé, y inclus l’exemplarité des bâtiments publics pour atteindre la neutralité énergétique bien avant 2050 ;
- Recours facilité aux contrats de performance énergétiques, dont le résultat garanti répond aux exigences de démonstrabilité d’impact du mécanisme article 7 ;
- Mise en œuvre du plan FAST, dont toutes les mesures de transfert modal (modes doux, transports en commun, véhicules partagés, etc...) sont éligibles au mécanisme article 7 ;
- Nouvelle génération d’accords sectoriels avec l’industrie et les entreprises ;
- Poursuite du soutien financier aux entreprises en transition vers une énergie durable, avec une attention toute particulière pour les PME.
3.2.2. Stratégie rénovation bâtiment Long terme (public et privé/ résidentiel et non résidentiel)

Pour parvenir à augmenter significativement le taux de rénovations (> 3%/an), la stratégie wallonne de rénovation énergétique à long terme du bâtiment propose un panel d’actions et de mesures, tant pour le parc résidentiel que tertiaire, qui s’articulent autour de trois axes :

- L’axe 1 vise à créer le cadre transparent propice aux investissements énergétiquement efficaces,
- L’axe 2 vise à structurer et renforcer le marché de l’offre des fournitures et des services liés à la rénovation,
- L’axe 3 vise à renforcer la demande pour des bâtiments énergétiquement performants.

Les trois axes sont déclinés en objectifs, eux-mêmes déclinés en mesures et actions dont plus de la moitié sont planifiées à court terme. Plusieurs des mesures et actions approuvées dans d’autres textes et notamment dans l’Alliance Emploi-Environnement font partie de ces mesures et actions à court terme.

Mesures existantes

Le tableau ci-dessous rassemble un extrait non exhaustif et hors incitants financiers32 des mesures existantes intégrées à la stratégie de rénovation à long terme. Ces mesures devront être poursuivies entre 2020 et 2030.

32 Le tableau ne reprend notamment pas le régime de primes à la rénovation pour les particuliers ni les incitants pour le secteur tertiaire tel que le programme UREBA
### Type de mesures	Mesures existantes	Description
Réglementaires | Exigences PEB | Le Gouvernement wallon a adopté une règlementation PEB applicable depuis le 1er mai 2010. En matière de rénovation du bâti, les exigences PEB portent sur le niveau de performance des parois rénovées et exigent un niveau identique à celui des parois des nouvelles constructions.33

A partir du 1er janvier 2017, le niveau minimum de la performance globale du bâtiment (Espec<= 115kWh/m²/an) est exigé pour les logements neufs ainsi que pour les rénovations importantes (définies comme portant sur plus de 75% de la surface de l’enveloppe avec le remplacement des systèmes). Ce niveau est abaissé à 85kWh/m²/an34 à partir du 1er janvier 2021.

En rénovation, les exigences sont renforcées pour certaines parois modifiées (fenêtres, planchers).

La méthode de calcul évolue également à partir du 1er janvier 2017. Ces évolutions incluent d’une part une nouvelle méthode PEN, applicable au calcul de la performance des unités PEN (unités non résidentielles et logement collectif) et, d’autre part, des modifications de la méthode PER (logements individuels), des nœuds constructifs et des pertes par transmission.

33 Pour le neuf, les exigences portent sur la performance globale du bâtiment.
34 Valeur associée au standard NZEB (Nearly zero energy building – bâtiment dont la consommation est quasi nulle ou bâtiment Quasi Zéro Energie) en Région wallonne.
<table>
<thead>
<tr>
<th>Type de mesures</th>
<th>Mesures existantes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exigences système</td>
<td>Des exigences (rendement, calorifugeage, comptage énergétique, etc.) s'appliquent également, depuis le 1er mai 2016, aux systèmes (chauffage & eau chaude sanitaire, climatisation, ventilation) installés, remplacés ou modernisés. Ces exigences s'appliquent principalement aux bâtiments existants ; certaines d'entre elles (comptage énergétique) s'appliquent également aux bâtiments à construire.</td>
<td></td>
</tr>
<tr>
<td>Cohérence des différentes réglementations</td>
<td>Le Code wallon de l’habitation durable a été réformé pour améliorer la qualité du bâti wallon et ses performances énergétiques. Dorénavant, ce Code reprend, pour l'ensemble des logements wallons, des critères de salubrité et de performance énergétique minimale liée l’étanchéité à l’air. Le CoDT, qui entre en vigueur le 1er juin 2017, contient un certain nombre de dispositions facilitant les démarches administratives. La généralisation de la valeur indicative des schémas et permis d’urbanisation et l’abrogation de certaines normes, notamment, permettent d’assouplir les prescriptions urbanistiques et d’intégrer plus efficacement les préoccupations énergétiques dans la gestion des autorisations administratives.</td>
<td></td>
</tr>
<tr>
<td>Information, sensibilisation</td>
<td>Information envers les citoyens</td>
<td>La Wallonie a élaboré une série d’outils d’information et de sensibilisation disponibles sur le portail energie.wallonie.be, dont des guides pratiques, des campagnes de communication pour promouvoir l’audit énergétique, des guichets énergie (16 guichets pour l’ensemble de la Wallonie) qui accueillent et guident le citoyen dans les domaines touchant à l'énergie au sein de son habitat, gratuitement.</td>
</tr>
<tr>
<td>Type de mesures</td>
<td>Mesures existantes</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Accords volontaires</td>
<td>Information envers les professionnels</td>
<td>Les pratiques exemplaires en matière de construction et rénovation durable sont également mises à l’honneur dans les centres de formation spécialement dédiés à ce secteur, en particulier les deux centres de compétences Construform Hainaut et Liège et le centre d’Excellence Greenwal en province de Namur. Depuis 2014, le portail Construction durable fournit aux professionnels, entrepreneurs, architectes, bureaux d’étude, producteurs et négociants, un outil internet rassemblant des informations validées sur les techniques, les matériaux et les produits innovants et durables et fait le lien avec le portail Energie.</td>
</tr>
<tr>
<td>Outils</td>
<td>Audits énergétiques</td>
<td>Pour disséminer les bonnes pratiques permettant au secteur d’atteindre progressivement les exigences en matière de performance énergétique des bâtiments, la Région wallonne a mené de 2004 à 2011 l’action Construire avec l’énergie, visant la construction de logements neufs à moindre consommation d’énergie, plus performants que ne l’exigeait la réglementation en vigueur. Cette action a été poursuivie par l’action « Bâtiments Exemplaires Wallonie » pour promouvoir la construction et la rénovation de bâtiments exemplaires durables, tant pour les bâtiments résidentiels que pour les bâtiments tertiaires. Elle constitue un véritable laboratoire de la construction durable et de la performance énergétique des bâtiments.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L’audit énergétique mis en place depuis 2006 a fait l’objet d’une extension et d’adaptations profondes en 2014 (PAE 2). En 2019, il est devenu l’ « Audit</td>
</tr>
<tr>
<td>Type de mesures</td>
<td>Mesures existantes</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>logement » et permet non seulement l’évaluation globale de la performance du logement existant mais également de connaître les points faibles d’un logement et d’identifier les travaux à réaliser prioritairement afin d’améliorer le confort et la santé des habitants et de diminuer les consommations d'énergie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Précédemment, l’audit « PAE2 » se limitait aux critères énergétiques de l’habitation. A présent, l’audit logement intègre également des critères de sécurité, santé et salubrité à l’analyse du logement par l’auditeur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Il constitue dorénavant le passage obligé pour obtenir l’accès aux primes habitation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L’audit énergétique, tel que prévu dans le système actuel d’octroi de primes et de prêts, sera amélioré dans un objectif de simplification et d’accélération de la rénovation du bâti ; il restera obligatoire, sauf pour l’isolation du toit et les travaux dont le montant est inférieur à 3.000 euros.</td>
<td></td>
</tr>
</tbody>
</table>
Mesures de renforcement

Parmi les mesures de renforcement, trois outils spécifiques seront mis en œuvre dans le cadre de la stratégie de rénovation. Ces outils traduisent une volonté du secteur, exprimée de façon récurrente lors des consultations, d’inscrire tout projet de rénovation dans une réflexion globale, cohérente avec les objectifs à long terme de la Wallonie et en garantissant un encadrement des travaux de rénovation.

Ces outils sont :

- La feuille de route : intégrée à l’audit logement, la feuille de route propose la trajectoire de rénovation à suivre pour atteindre l’objectif de la région, le Label A (consommation primaire de 85 Kwh/m²an), tout est fournissant une estimation des frais de rénovation associés.

- Le passeport bâtiment : outil interactif et évolutif destiné à accompagner le bâtiment tout au long de sa vie. Il centralisera l’ensemble des informations liées aux bâtiments et réparties selon différents volets administratifs (localisation, type d’habitation, permis) et techniques (plans, études stabilité, HVAC, essais de sols, eaux, énergie ...).

- Le guichet unique : Le guichet unique reprendra tous les services d’accompagnement aux ménages en énergie/logement. Il pourra aiguiller le ménage dans le type de rénovation énergétique à réaliser, l’aider à comprendre les avantages de la rénovation, s’assurer que ces dernières soient en lien avec le passeport énergétique du bâtiment, accompagner les ménages dans l’identification des entrepreneurs qui pourront réaliser les travaux, et les aiguiller sur la manière de financer ces derniers. Ce guichet unique sera établi sur base des outils existants et via une mise en réseau des acteurs existants.

Bien qu’actuellement élaborés pour les bâtiments résidentiels, l’extension de ces outils pour la rénovation des bâtiments tertiaires sera prévue.

En matière de financement, notons le maintien et l’amélioration du régime de primes, avec l’imposition de réaliser un audit (sauf pour les travaux d’isolation du toit et pour les travaux de rénovation inférieurs à 3.000€) pour bénéficier de primes, en particulier :

- Le renforcement du régime de primes pour viser prioritairement les logements les moins performants ;
- Une majoration du montant de la prime en fonction des revenus, pour les publics précarisés ;
- La priorisation des travaux afin de viser prioritairement l’amélioration de l’enveloppe.

D’autres mesures de renforcement sont actuellement en réflexion et alimenteront la nouvelle stratégie de rénovation prévue pour mars 2020, dont :
• Identifier et mettre en place les mesures incitatives les plus efficaces en vue de réduire le split incentive35 ;
• Identifier et mettre en place des mesures destinées à réduire la précarité énergétique ;
• Instaurer une incitation de rénovation aux moments clés de la vie d’un bâtiment, par exemple :
 o À partir de 2025, tout logement mis en location et dont le niveau de performance énergétique est de niveau F ou G sera rénové (selon la feuille de route) dans un délai déterminé, n’empêchant pas la mise en location dans l’intervalle et selon les modalités qui seront établies ultérieurement. Ces modalités devront être développées dans le respect des conditions d’accès au logement et dans l’intérêt des propriétaires ;
 o Au plus tôt à partir de 2025, incitation à rénover un logement lors de l’achat, selon la feuille de route (temps de retour inférieur à 10 ans).
• Mettre en place de mesures facilitant la division des logements
• Valoriser les métiers par une labellisation/certification des professionnels. Cette labellisation/certification ne devra pas entrainer de surcoût dans les travaux réalisés.
• Identifier plus précisément la stratégie de rénovation pour les bâtiments (dont le logement) publics
• Définir de manière plus approfondie la stratégie de financement

Le tableau ci-dessous reprend l’ensemble des mesures existantes et de renforcement, envisagées à l’horizon 2050, issues de la stratégie rénovation. Ces mesures portent tant sur l’offre que sur la demande.

35 Split Incentive : De manière plus spécifique, certains blocages découlent du non-alignement des intérêts (« Split incentive ») entre les différentes parties prenantes. Ceci est souvent le cas entre propriétaires et locataires : pour le locataire, le temps de retour sur investissement est souvent disproportionné par rapport à la durée d’occupation. Cette divergence des intérêts et des informations détenues par les propriétaires et les locataires et le déphasage temporel entre le temps de retour sur investissement et la durée d’occupation du logement est une barrière importante à la massification de la rénovation. Ce manque d’alignement peut également se retrouver entre différents types de propriétaires (p.ex. : nu-propriétaire et usufruitier ; propriétaire-occupant et propriétaire-bailleurs au sein d’une copropriété ; ou enfin copropriétaires et syndicat dans une copropriété.
<table>
<thead>
<tr>
<th>Axes</th>
<th>Objectifs</th>
<th>Mesures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renforcer le cadre pour assurer la transparence, stabilité et crédibilité propice aux investissements énergétiquement efficaces</td>
<td>Faire évoluer le système d'incitation</td>
<td>1. Poursuivre le renforcement des normes énergétiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Renforcer la cohérence des différentes réglementations vis-à-vis des critères d'efficacité énergétique</td>
</tr>
<tr>
<td></td>
<td>Mise à jour des connaissances et adaptation de la stratégie</td>
<td>3. Améliorer la connaissance du parc de bâtiments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Monitorer les résultats de la stratégie de rénovation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Évaluer et mettre régulièrement à jour la stratégie de rénovation du bâti</td>
</tr>
<tr>
<td>Mobiliser les pouvoirs publics</td>
<td>6. Rénover les logements publics [AEER 22], et le faire de manière exemplaire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Renforcer le rôle d'exemple des bâtiments publics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Intégrer des clauses sociales, éthiques et environnementales dans les marchés publics de travaux [AEER 7 - AEER 8 - PAEE002 – PACE B10]</td>
<td></td>
</tr>
<tr>
<td>Inscriver les outils de communication et de sensibilisation dans une perspective 2050</td>
<td>9. Inciter les communes à mettre en place une politique énergie-climat sur leur territoire [PACE B32]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Impliquer tous les acteurs (société civile, parties prenantes, …) grâce à une communication adaptée</td>
<td></td>
</tr>
<tr>
<td>Structurer et renforcer le marché de l’offre des fournitures et des services liés à la rénovation</td>
<td>Soutenir le développement de solutions énergétiquement efficaces et durables</td>
<td>11. Développer les filières de matériaux et de systèmes constructifs innovants et durables en Wallonie [AEER 15]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Promouvoir les matériaux innovants wallons de conception durable [AEER 16]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Promouvoir les pratiques exemplaires en matière de réutilisation / recyclage / valorisation des matériaux de (dé)construction [AEER 14]</td>
</tr>
<tr>
<td>Axes</td>
<td>Objectifs</td>
<td>Mesures</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>14. Soutenir et promouvoir les solutions énergétiquement efficaces, durables et de qualité</td>
<td></td>
</tr>
<tr>
<td>Développer des outils et soutien aux professionnels</td>
<td>15. Développer et renforcer les outils permettant une approche intégrée et à long terme des projets</td>
<td>16. Favoriser les outils permettant une évaluation de toutes les dimensions de durabilité des projets de rénovation</td>
</tr>
<tr>
<td></td>
<td>17. Sensibiliser les professionnels et promouvoir le partage d’expériences en matière de rénovation énergétique durable</td>
<td></td>
</tr>
<tr>
<td>Amplifier les efforts de sensibilisation, formation, certification et contrôle</td>
<td>18. Assurer une formation de qualité</td>
<td>19. Assurer la bonne mise en œuvre des ouvrages ou services réalisés</td>
</tr>
<tr>
<td></td>
<td>20. Renforcer le rôle des professionnels dans les travaux de rénovation</td>
<td>21. Contrôler pour assurer la bonne mise en œuvre des ouvrages ou services réalisés</td>
</tr>
<tr>
<td>Renforcer la demande pour des bâtiments énergétiquement performants</td>
<td>22. Sensibiliser les citoyens à la performance énergétique des logements et les inciter à la décision en matière de rénovation énergétique durable</td>
<td>23. Encourager les citoyens à inscrire leur projet de rénovation dans une réflexion globale en incitant à la réalisation d’une feuille de route rénovation</td>
</tr>
<tr>
<td></td>
<td>24. Encourager les organismes à inscrire leur projet de rénovation dans une réflexion globale en incitant à la réalisation d’une feuille de route rénovation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25. Développer et promouvoir les outils d’accompagnement des ménages, en privilégiant les solutions d’accompagnement intégré</td>
<td></td>
</tr>
<tr>
<td>Axes</td>
<td>Objectifs</td>
<td>Mesures</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Renforcer la demande de toute catégorie</td>
<td>26. Soutenir les publics les plus défavorisés dans l’implémentation des solutions les plus efficaces pour la rénovation de leur logement</td>
<td>27. Encadrer les propriétaires bailleurs dans l’amélioration globale de la performance énergétique de leurs bâtiments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28. Encourager et faciliter les approches de rénovation par groupe de logements</td>
</tr>
<tr>
<td>Assurer le maintien des réductions de consommation d’énergie</td>
<td>29. Inciter à la maintenance des bâtiments et des installations</td>
<td>30. Mettre en place une stratégie pour limiter l’effet rebond</td>
</tr>
</tbody>
</table>
La planification d’actions relatives à ces mesures est disponible dans la stratégie de rénovation approuvée en 201736.

Description du phasage à l’échelle de la Région

Le phasage des étapes de rénovation à l’échelle de la Région se traduit en une évolution du rythme annuel de rénovation, décliné pour chaque mesure et chaque segment du parc de logements.

Les éléments suivants guident le phasage :

- La volonté que la rénovation énergétique aille de pair avec une réduction significative de la précarité énergétique et une amélioration de la qualité des logements wallons,
- La nécessité d’étaler les financements publics requis pour stimuler les investissements dans les projets de rénovation,
- La volonté de la Région de positionner sa stratégie de rénovation comme élément moteur pour l’atteinte des objectifs européens de réduction des consommations d’énergie.

La figure ci-dessous schématise ces évolutions qui sont présentées de manière quantitative dans les tableaux qui suivent.

Les principaux éléments du phasage proposé sont les suivants :

2020 : Augmentation du rythme annuel de rénovation (orange foncé) de l’isolation des toits pour tous les logements pour atteindre un rythme de croisière (bleu). Cette augmentation devra être facilitée par la mise en œuvre de la suppression de l’obligation d’audit obligatoire pour ce type de travaux ;

2025 : Priorisation des efforts pour la rénovation du reste de l’enveloppe : augmentation du rythme de rénovation pour les labels G et F ;

2030 : Priorisation des efforts pour la rénovation du reste de l’enveloppe pour les autres bâtiments ;

2030 : Les efforts sont déployés pour la rénovation des systèmes et les sources de production d’énergie renouvelables pour les labels G ;

2035 : Les efforts sont déployés pour la rénovation des systèmes et les sources de production d’énergie renouvelables pour les labels F et les autres bâtiments ;

2040 : L’ensemble de l’enveloppe est rénové pour tous les bâtiments de label G ;

2045 : L’ensemble de l’enveloppe est rénové pour tous les bâtiments de label F en 2045.

Il est considéré que la rénovation se poursuit au rythme actuel (beige) lorsque les efforts n’ont pas été déployés pour l’augmenter. Il s’agit alors de rénovations liées aux moments charnières de la vie du bâtiment (vente, mise en location, ...).

Le rythme actuel est néanmoins augmenté des rénovations embarquées dans les rénovations profondes en une fois³⁷.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Toits</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Toits</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Toits</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Toits</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Toits</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Toits</td>
</tr>
<tr>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
<td>Autres</td>
</tr>
<tr>
<td></td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Murs, sols, fenêtres</td>
<td>HVAC et SER</td>
<td>Murs, sols, fenêtres</td>
</tr>
</tbody>
</table>

Mesures de Financement spécifiques

La stratégie de financement suivra les lignes directrices suivantes :

1. **Coût de la stratégie pour les pouvoirs publics** : ce coût dépend d’une série de variables sur lesquelles le pouvoir public peut avoir une influence. Il ne s’agit donc pas d’une donnée fixe à prendre ou à laisser. L’effort de financement est plus une question d’alignement des budgets disponibles que de besoins nets.

2. **Mesure prioritaire concernant les bâtiments appartenant aux pouvoirs publics** : massification de la demande permettant l’utilisation des contrats de performance énergétique (CPE), action en préparation.

3. **Mesure prioritaire concernant les logements privés** : la prise de décision en matière de rénovation dépend de bien d’autres critères qu’uniquement la disponibilité des finances. Le guichet unique (voir 3.3.2) prendra en charge toutes les démarches nécessaires apportera une réponse à toutes les contraintes, techniques, financières et administratives du candidat rénovateur.

4. **Mesure prioritaire concernant les bâtiments tertiaires privés** : le postulat est que le secteur privé entreprendra les travaux nécessaires lorsqu’il deviendra plus cher de ne rien faire que de se lancer dans les

³⁷ Cf. Annexe 8 de la stratégie rénovation wallonne
rénovations. Les diverses options permettant d’agir sur ce secteur sans créer de charge particulière sur celui-ci seront évaluées.

5. **Mobilisation de l’épargne privée** : étant donné que 75% du parc de bâtiments est composé de logements privés dont les propriétaires passeront en grande majorité par un crédit hypothécaire ou prêt à tempérament pour financer leurs travaux, travailler à l’émergence de produits financiers adaptés en collaboration avec les banques de détail apparait comme une priorité. Cette mobilisation pourra également se faire via la mise en œuvre d’ESCO spécifiques ou de Contrats de Performances énergétiques (CPE)

6. **Mobiliser les fonds européens** : un grand nombre de programmes et projets européens existe. En matière d’énergie, soulignons l’importance grandissante du programme LIFE.

7. **Mobilisation des fonds régionaux** : des budgets importants sont mobilisés depuis plusieurs années avec l’efficacité énergétique comme thème. Des mesures sont prises pour utiliser les fonds publics relativement contraints pour des résultats les plus efficaces.

Le tableau suivant reprend les instruments listés dans la stratégie de rénovation approuvée en 2017. Ceux-ci font l’objet d’une réflexion complémentaire dans le cadre de la mise à jour prévue pour mars 2020, notamment en prenant plus particulièrement en compte les barrières à la rénovation pour certaines cibles (propriétaires-bailleurs, copropriétés, …) et conformément aux guidelines de l’Europe.

<table>
<thead>
<tr>
<th>Type d’instruments</th>
<th>Mesures</th>
<th>Public cible</th>
<th>Actions</th>
<th>Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventionnels</td>
<td>Octroyer des primes et subsides</td>
<td>Résidentiel</td>
<td>Primes à l’énergie, Primes à la rénovation, Mebar (pour revenus modestes), Pivert (rénovation logements publics)</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lier le système de primes à la feuille de route rénovation, Des mécanismes d’encouragement et des expériences pilotes seront mis en œuvre, notamment quant à la rénovation simultanée de quartiers entiers ou la démolition/reconstruction de logements vétustes et difficiles à isoler efficacement ou à la rénovation de bâtiments publics phares. Analyser</td>
<td>2030</td>
</tr>
<tr>
<td>Type d’instruments</td>
<td>Mesures</td>
<td>Public cible</td>
<td>Actions</td>
<td>Horizon</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>l’opportunité d’octroi de primes démolition/construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UREBA (travaux de rénovation dans les bâtiments publics), Fonds des bâtiments scolaires, Infrasport (infrastructures sportives), Plan Piscine, Audits AMURE (audits énergétiques), Aides UDE (Utilisation durable de l’énergie), Audit énergétique industries (via accords de branche)</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tertiaire</td>
<td>Pérenniser UREBA+ UREBA exceptionnel(^{38}), Optimiser le système d’aide aux investissements, Subvention pour audits à travers des primes</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Utiliser UREBA exceptionnel comme levier pour massifier la demande et ainsi utiliser du tiers investissement et des CPE.</td>
<td>En préparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encourager les prêts à taux préférentiels et fournir des garanties sur emprunts</td>
<td>Expérience pilote de convention cadre entre SPW et organisme bancaire pour prêts préférentiels, combiné à des subventions pour la rénovation</td>
<td>A l’étude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Résidentiel</td>
<td>Ecopack/ rénopack/Accesspack</td>
<td>Existant, en transformation</td>
</tr>
</tbody>
</table>

\(^{38}\) Depuis le 1er janvier 2019, un appel à projets UREBA exceptionnel à destination des écoles de l’enseignement obligatoire soutient les travaux qui ont trait à l’amélioration de l’enveloppe ou l’installation ou l’amélioration du système de ventilation par une prime de 75% (80% sous certaines conditions) des montants éligibles.
<table>
<thead>
<tr>
<th>Type d’instruments</th>
<th>Mesures</th>
<th>Public cible</th>
<th>Actions</th>
<th>Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Etendre l’expérience pilote pour prêts préférentiels, Fournir des garanties sur emprunt pour ménages à revenus précaires</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mise en place d’un instrument de prêt à taux zéro, en complément au programme UREBA, pour les bâtiments du secteur public et non marchand</td>
<td>2020</td>
</tr>
<tr>
<td>Tertiaire</td>
<td>Taux de TVA de 6% pour bâtiments sur les habitations d’au moins 10 ans</td>
<td>Existant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscaux</td>
<td>Réduire la TVA pour la rénovation énergétique</td>
<td>Résidentiel</td>
<td>Etudier avec les autres instances nationales la possibilité d’introduire une TVA réduite à 6% pour les rénovations aux travaux de démolition par rapport à la reconstruction quand celle-ci apparait plus rentable que la rénovation profonde. Etudier avec les autres instances nationales la possibilité d’introduire une Taux de TVA de 6% pour les travaux visant l’amélioration des performances énergétiques et sur les matériaux permettant de réaliser de tels travaux (en ce compris pour les particuliers)</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Réduction impôts pour les dépenses d’isolation de la toiture, Chèque habitat (réduction d’impôt sur le crédit hypothécaire)</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Résidentiel</td>
<td>Analyser l’ensemble des leviers fiscaux et autres</td>
<td>H2030</td>
</tr>
<tr>
<td>Type d’instruments</td>
<td>Mesures</td>
<td>Public cible</td>
<td>Actions</td>
<td>Horizon</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Développer le système de fiscalité « verte »</td>
<td></td>
<td>dont dispose la région en vue d’une rénovation profonde.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baisse des droits de donation depuis le 1/9/2018</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tertiaire</td>
<td>Déduction fiscale pour investissements économiseurs d’énergie</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td>Adapter les droits d’enregistrements, de succession, de donation</td>
<td>Résidentiel</td>
<td>Réduire les droits de succession sous des conditions de rénovation énergétique profonde</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Réduire les droits d’enregistrement et de donation pour l’acquisition de la première habitation propre et unique sous des conditions de rénovation énergétique profonde</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td>Mobilisation des fonds</td>
<td>Résidentiel</td>
<td>Créer, gérer et promouvoir un mécanisme spécifique pour la rénovation énergétique</td>
<td>H2030</td>
</tr>
<tr>
<td></td>
<td>Mobiliser des fonds pour la rénovation énergétique</td>
<td></td>
<td>FEDER/ Bas-carbone/bâtiments - Renforcement de l’attractivité urbaine pour les citoyens, les visiteurs et les entreprises (32,8 millions)</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td>Mobiliser les fonds européens</td>
<td>Résidentiel</td>
<td>BEI (Belfius- projets Smart cities & sustainable Development) pour les villes et communes,</td>
<td>Existant</td>
</tr>
<tr>
<td>Type d’instruments</td>
<td>Mesures</td>
<td>Public cible</td>
<td>Actions</td>
<td>Horizon</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FEDER/ Renforcement de la compétitivité du territoire par la création et la requalification d’infrastructures propices à l’accueil des entreprises contribuant à la transition vers une économie Bas Carbone (19,7 millions + 18,7 millions pour le Brabant wallon), ELENA, PIVERT (BEI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tertiaire</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mobilisation de l’épargne au profit des PME (Sowalfin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Encourager la mobilisation de l’épargne citoyenne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Résidentiel</td>
<td>H2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mobiliser l’épargne citoyenne au profit de la rénovation énergétique des bâtiments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Résidentiel/ Tertiaire</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PPP, via tutelle de SWL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Promouvoir un système de loyer chaud, encourager les propriétaires bailleurs à rejoindre des coopératives de gestion pour la rénovation de biens immobiliers</td>
<td>A définir</td>
</tr>
<tr>
<td>Innovants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Encourager les propriétaires bailleurs à investir dans la rénovation énergétique</td>
<td>Existant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Résidentiel public</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Belesco, Intercommunales, Rénowatt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Définir un cadre pour les contrats de performance énergétique</td>
<td>H2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tertiaire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stimuler les CPE, évaluer la possibilité de mise en place d’un cadre réglementaire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Résidentiel/Tertiaire</td>
<td></td>
</tr>
</tbody>
</table>
3.2.3. Description des politiques et mesures visant à promouvoir les services énergétiques dans le secteur public et des mesures visant à éliminer les obstacles réglementaires qui entravent la généralisation des contrats de performance énergétique et d’autres modèles de services en matière de l’efficacité énergétique : Développer le cadre juridique et réglementaire des ESCO et des CPE en Wallonie

L’encadrement des entreprises de services énergétiques (actuellement opérationnel pour les services publics) sera renforcé et son périmètre d’intervention élargi. Ces entreprises (Energy Service Companies ou ESCOs) apportent des compétences, des moyens humains et certaines garanties (contrats de performance énergétique voire tiers investisseur) permettant la réalisation des investissements nécessaires à réduire la consommation d’énergie.

Le public visé est

- Les bâtiments publics (situation actuelle) dont le logement public ;
- Les entreprises pour leurs bâtiments et activités industrielles ;
- Les copropriétés

Le résidentiel individuel pourrait être envisagé ultérieurement.

Une agence des ESCOs développe les outils nécessaires (contrats type, suivi de performance, maitrise technique, pooling de bâtiments) et institutionnalise les pratiques pour une meilleure efficacité.

L’objectif est de maîtriser et réduire les consommations d’énergie des consommateurs.

Dans le cas d’un bâtiment tertiaire ou de logement collectif, la relation de propriétaire (celui qui est susceptible de réaliser les investissements et donc de supporter le coût) à locataire (celui qui est susceptible de bénéficier d’un bâtiment plus performant) est déterminante. Il y a lieu de mettre en place des mesures qui permettent une juste répartition des coûts-bénéfices. Pour le gestionnaire d’un parc de bâtiments, tout sera mis en œuvre pour :

- Mettre en pratique le principe de Total Cost of Ownership (TCO) : le gestionnaire supporte les charges liées à la consommation d’énergie (et donc voit un intérêt à réduire celle-ci), il met à disposition un service complet ;
- La mobilisation des moyens ainsi que les bénéfices sont intégralement maîtrisés par le gestionnaire ;

Le système des ESCOs permet pour le prestataire une réduction des risques (portefeuille de plusieurs bâtiments), et libère le client des tracas énergétiques pour qu’il puisse se focaliser sur son « core business ». Cette mesure permet également de renforcer l’action dans le cadre du rôle exemplaire des bâtiments publics.
Une attention particulière devra être toutefois être portée à la faisabilité d’inclure l’isolation thermique des enveloppes dans le système d’ESCO. En effet, le système des ESCO est plus difficile à appliquer pour des travaux dont le retour sur investissement est plus long, comme les travaux d’isolation thermique.

L’analyse effectuée a permis d’identifier plus de 30 actions, regroupées en 8 tâches principales, pour développer les ESCO en région wallonne, et de faire ressortir une priorité commune avec la Stratégie Rénovation, soit le développement du cadre juridique et réglementaire des ESCO et des CPE.
Pour y parvenir, plusieurs mesures ont été priorisées :

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Principales parties prenantes à impliquer</th>
</tr>
</thead>
</table>
| 1. Agence régionale | - Mettre en place une agence facilitatrice à l’échelle régionale comme point unique de contact pour tous les acteurs.
- Sa mission : centraliser les compétences et informations et accompagner les parties prenantes pour permettre aux deux axes (privé et non-marchand) de professionnaliser leurs processus et d’être implémentés efficacement.
- En cohérence avec la stratégie de rénovation, la digitalisation et le suivi de la performance des organisations bénéficiaires de services énergétiques doivent être renforcés | SPW,
Agences facilitatrices existantes (ex RENOWATT),
Fédérations ESCO
Experts techniques |
| 2. Boîte à outils techniques | - Elaboration de **formulaires et canevas** de CPE simplifiés adaptés aux PME du tertiaire
- Fixer un **cadre technique et un standard de mesure et vérification** des performances simplifié et adapté aux PME du tertiaire (ex sur base de l’International Performance Measurement and Verification Protocol (IPMVP))
- Mettre sur pied un **centre de certification technique** donnant accès à des spécialistes (personnel qualifié) et des « bancs de test » standards pour les principaux processus à améliorer dans le tertiaire, les écoles et les hôpitaux. Les techniques couvertes peuvent être | Experts juridiques
Facilitateurs ESCO existantes,
fédérations ESCO |
progressivement ajoutées à ce registre pour se focaliser à tout moment sur des gains éprouvés.
- Après 2020, établir un **cadre d’accréditation** des ESCO (une fois que le marché est mis en place)
- Développer un **centre de certification technique** (ou avec MRV extrêmement simplifié) par ex reposant sur des registres de techniques aux rendements testés et gains garantis par le centre technique (cf. supra). Les catalogues d’Actions qualifiantes Standardisées discutées dans la note « Article 7 » de cette étude PNEC 2030 doit servir de base.

3. Dissémination
- Mettre en place une **campagne d’information** sur les services énergétiques et la stratégie régionale en la matière ;
- Promotion et **diffusion des incitants aux investissements en EE** spécifiques au tertiaire et des solutions ESCO disponibles/ **Publication des modèles** de CPE et **liste des ESCO** reconnues (ou accréditées à moyen terme) via les agences facilitatrices
- Dissémination des ‘success stories’/Développer un **portail pédagogique** sur les CPE destinés aux gestionnaires énergie et juristes
- Introduire le financement EE et les modèles ESCO dans les conclusions d’audit énergétique et dans **les feuilles de route** de rénovation

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Principales parties prenantes à impliquer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Equipe communication du SPW</td>
</tr>
<tr>
<td>ID</td>
<td>Description</td>
<td>Principales parties prenantes à impliquer</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>- Promouvoir les agences facilitatrices auprès des fournisseurs d’équipements, de services énergétiques et gestionnaire d’énergie/bâtiments</td>
<td></td>
</tr>
</tbody>
</table>
| 4. | 4. Formation - Mettre en place un **programme de formation destiné au secteur bancaire**, incluant la promotion de la DEEP (de-risking EE platform) de la CE
- Etablir une formation aux techniques de monitoring et de vérification de la performance/ Elaborer une formation interdisciplinaire d’enseignement supérieur focalisée sur les ESCO et les CPE | Universités, écoles supérieures |
| 5. | 5. Réduire les risques liés au mécanismes de financement
Etudier divers mécanismes qui permettraient l’accès au financement et réduisant les risques de financement par les institutions bancaires. On peut citer, par exemple :
- Utiliser, pour le tertiaire, le fonds de transition énergétique, pour des financements de type revolving pour permettre l’accès au capital des petites ESCO (ou bénéficiaires finaux dans le modèle de garantie bancaire). Le fonds doit être amorcé par diverses sources (Publiques, communales, citoyennes, green bonds, revenus des quotas de CO₂, obligation des fournisseurs sous l’art.7, …) et se renouvellera en partie grâce aux économies d’énergie ou taux d’intérêts de prêt. Le fonds proposera notamment des dettes subordonnées à taux attractif. Un ordre de grandeur du fonds est de 250 à 300 Millions d’euros. | Monde bancaire, Fonds publics Coopératives citoyennes SPW, Fonds énergie |
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Principales parties prenantes à impliquer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Etablir d’autres mécanismes de réduction du risque financier (et du taux d’intérêt) pour les PME, ex-Garantie publique supplémentaire, subside pour la réduction du taux d’intérêt (ou déduction fiscale), co-investissement par d’autres sources que le fonds, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sécuriser les revenus de l’EE : Dans le cas où aucune mesure fiscale ne vient augmenter le prix de l’énergie du tertiaire ou des bâtiments publics, un soutien financier peut être nécessaire pour compléter les économies d’énergie et garantir une rentabilité aux ESCO et une attractivité suffisante pour les bénéficiaires finaux. Cela devra se faire en cohérence avec les mesures prises dans l’application de « l’article 7 ».</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Au niveau réglementaire : Développement des obligations vertes à l’échelle régionale ou communale, en cohérence avec le cadre européen, pour lever de nouvelles sources de financement dédiées</td>
<td></td>
</tr>
</tbody>
</table>
| 6. Projets pilotes | - Soutenir des projets type CPE pilotes pour (1) une sélection de commerces du tertiaire et (2) un groupe de 5 ou 6 communes et (3) un pool de bâtiments du SPW
- Suivre et promouvoir leurs résultats. | SPW, Facilitateurs publics actuels (ex : RENOWATT) | |
<p>| 7. Gouvernance | Réviser les modalités de gestion et règlements freinant l’adoption de CPE par les organisations publiques (hôpitaux et écoles en priorité), notamment, l’adaptation des contrats de gestion, l’inclusion des concepts | Pouvoirs publics | |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Principales parties prenantes à impliquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>énergétique publique</td>
<td>performance énergétique (CPE, MRV, économies d’énergie futurs...) dans les plans pluriannuels d’investissements, réviser les contrats de maintenance actuels pour permettre une adaptation ou l’intégration de CPE (ou plus généralement d’amélioration de l’EE) à l’avenir</td>
<td></td>
</tr>
</tbody>
</table>
| 8. Suivi de la mesure | - Suivre les effets des actions mises en place
- Réévaluer annuellement leur pertinence et les modifications nécessaires
- Mener les études nécessaires pour les affiner (ex : pour les mesures de réduction du risque financier et actions de soutien juridique, développement des standards de MRV) | SPW-DGO4
Experts techniques |
3.2.4. Rôle exemplaire des bâtiments publics

Pour atteindre ses objectifs 2030 et 2050, la Wallonie va étendre et renforcer l’exemplarité de ses bâtiments publics. Un objectif de neutralité énergétique sera imposé à tous les bâtiments publics, avec un échéancier de réalisation dépendant du niveau de pouvoir concerné. L’objectif de cet échéancier étant de garantir la neutralité carbone au plus tard en 2050.

Seront visés :
- Les bâtiments administratifs des Gouvernements centraux (Région wallonne, Fédération Wallonie Bruxelles et Deutsche Gemeinschaft)
- Les bâtiments administratifs des pouvoirs locaux (Communes et Provinces), ainsi que les établissements scolaires

Cette neutralité énergétique est définie comme la compression des besoins (chauffage, ECS, refroidissement et éclairage) au niveau d’un bâtiment neuf équivalent\(^{39}\), le maintien des autres consommations électriques au niveau actuel, et la couverture de ces besoins par une production renouvelable, qu’elle soit autoproduite ou achetée.

Les outils proposés pour arriver à cet objectif sont :

- Actualiser les manuels et procédures de bonne gestion des infrastructures des bâtiments publics (éclairage, régulation chauffage, équipement électrique, infrastructure téléphonique et informatique, …);
- Imposer un cadastre précis des bâtiments publics (en lien avec la certification des bâtiments publics) suivant une méthodologie assurant fiabilité et cohérence des données collectées;
- Elaborer une feuille de route visant l’amélioration de la performance énergétique de leurs bâtiments;
- Établir une stratégie de rénovation ciblée à partir de la feuille de route en vue de réduire la consommation totale d’énergie pour atteindre la neutralité énergétique, avec plan d’actions priorisées;
- Étudier, lors de toute intervention sur un bâtiment, toutes les mesures liées à l’intervention qui permettent d’augmenter la performance énergétique du bâtiment. Il s’agira dès lors de mettre au minimum en œuvre les mesures de la feuille de route compatibles avec les travaux envisagés.
- L’imposition de monitoring et de rapportage d’impact des mesures prises
- Le recours facilité aux contrats de performance énergétique

\(^{39}\) selon l’étude Costoptimum2
3.2.5. Activer les comportements pour réduire la consommation d’énergie dans le résidentiel

Selon une analyse menée en Wallonie, les changements de comportement individuels sont considérés comme un levier crucial pour modérer la consommation d’énergie dans le logement, le transport, les loisirs, et les autres secteurs de consommation.

Le potentiel de réduction des émissions de GES lié aux changements de comportement est élevé : des études réalisées dans d’autres pays estiment qu’il peut varier entre 10% et 27% (Stern, 2009) (USA) (S. Nonhebel, 2001) (Pays-Bas). Cependant, le niveau d’acceptation des changements de comportements est actuellement faible, estimé à seulement 5% (5% selon (S. Nonhebel, 2001)). Il est donc nécessaire de mettre en place des programmes cohérents sur le long terme, pour augmenter ce taux d’acceptation et ainsi exploiter au maximum le potentiel de réduction disponible. Ces programmes doivent être ciblés sur un message clair et facile à intégrer.

La Wallonie promeut l’utilisation rationnelle de l’énergie depuis de nombreuses années. De nombreux outils législatifs (PEB) et incitatifs (primes et subsides) ont ainsi été mis en place, accompagnés de campagnes de communication sous de nombreuses formes et de nombreux canaux.

Le potentiel à priori activable en Wallonie serait de l’ordre de 2-3 TWh. Il est cependant quasiment impossible de déterminer quelle part de ce potentiel sera effectivement activée sans plan d’action précis et rétro-vérification du résultat obtenu. De plus, l’impact obtenu ne le sera jamais par la seule action de la communication, mais par la convergence de toute une série d’actions cohérentes (communication, formation, incitants, référentiels législatifs ou techniques, etc...).

Dans ce cadre, la Wallonie peut jouer un rôle centré sur :

➢ **La communication cohérente basée sur les objectifs poursuivis :**

Le message de fond sur la durée doit ensuite s’accompagner de campagnes thématiques ciblées autour de quelques priorités annuelles (sujets et cibles), et tenant compte de l’hétérogénéité du public. Les règles de base d’une communication efficace s’appliquent à ces messages.

➢ **Une approche intégrée, sur le long-terme, et incluant des mesures législatives :**

Une étude récente (Axon S. et al. (2018) “The human factor: Classification of European community-based behaviour change initiatives”, Journal of Cleaner Production, 182, 567e586) indique que les campagnes de sensibilisation peuvent être une première étape importante, mais qu’il est établi dans la littérature qu’elles ne
peuvent promouvoir à elles seules des changements de comportement, en particulier au-delà de leur terme. L’étude met en avant l’efficacité du recours à des approches top-down, incluant des mesures réglementaires, pour promouvoir des changements de comportement sur du long-terme. L’étude note également que des mesures fiscales temporaires peinent à induire des changements de comportements sur du long-terme.

En lien avec les mesures réglementaires, une deuxième étude de 201844 met en avant l’impact de changer les options par défaut pour activer les changements de comportements. Dans le même ordre d’idée, fournir des programmes d’audits gratuits devrait également inciter les investissements, tant dans les secteurs industriel que résidentiel.

➢ **La levée des barrières :**

Un autre rôle du pouvoir public est de réduire les barrières à ce changement de comportement.

Les actions identifiées pour ce faire sont :

- Accompagner et favoriser l’émergence sur le marché de services/produits/technologies d’appui au comportement responsable en énergie, en évitant les « lock-in » ;
- Permettre un accès simple et rapide à l’information, via une plateforme centralisée, idéalement en lien avec la plateforme proposée pour la promotion des choix responsables (voir section 3.1.1.v.). Un guichet unique, basé sur les expertises (guichet de l’énergie, conseillers logements, ...) déjà existantes, reprendra tous les services d’accompagnement aux ménages en énergie/logement. Il pourra d’une part aiguiller le ménage dans le type de rénovation énergétique à réaliser, l’aider à comprendre les avantages de la rénovation, s’assurer que ces dernières soient en lien avec le passeport énergétique du bâtiment, accompagner les ménages dans l’identification des entrepreneurs qui pourront réaliser les travaux, et les aiguiller sur la manière de financer ces derniers ;
- Structurer le réseau d’accompagnement local, proche du citoyen, qui se chargera d’une partie de la communication, des conseils pratiques et des incitants
- Développer les infrastructures publiques, lorsque cela s’avère nécessaire ;
- Organiser la valorisation des bonnes pratiques et l’encadrement qualitatif des prestations et produits ;

- Mettre en place le cadre financier et juridique incitatif et répressif ;
- Faire évoluer positivement les « normes sociales » qui ont tant d’influence sur les comportements, en limitant l’impact de communications extérieures contre-productives.

➢ L’assurance de la gouvernance :
Un dernier rôle important du pouvoir public est de s’assurer régulièrement de la pertinence des actions entreprises envers l’objectif poursuivi. L’impact des campagnes de communication doit être régulièrement évalué pour permettre de les optimiser constamment en corrigeant le tir si nécessaire, et l’émergence de nouvelles idées doit pouvoir être intégrée rapidement.

De la même façon, l’impact des outils mis à disposition doit être monitoré systématiquement et l’ampleur des soutiens ou freins financiers doit pouvoir être adaptée en fonction des évolutions constatées.

Une cellule d’experts devrait être créée pour assurer ce suivi, communiquer ses conclusions et assurer la mise en œuvre de ses recommandations.

3.2.6. Bâtiment neuf : Promouvoir l’autonomie énergétique

Afin de promouvoir l’autonomie énergétique des bâtiments neufs à partir de 2025, la Wallonie prévoit la mise en œuvre de mesures selon deux phases :

- Une première phase de préparation vise à poser le cadre et promouvoir l’action volontaire en stimulant la demande (communication, soutien financier, accès au financement) et en développant une offre de qualité (formation des professionnels, développement des outils techniques).
- Une seconde phase consistant en un renforcement progressif et cohérent des exigences réglementaires.

7 axes de travail ont été définis :

- Définir le cadre et assurer la cohérence des stratégies
- Développer la demande par l’information et la sensibilisation
- Améliorer la qualité de la formation
- Assurer la disponibilité et l’efficacité des outils
- Valoriser la performance énergétique dans la valeur immobilière
- Soutenir financièrement le ZEN et assurer son accès à tous les publics
- Assurer l’amélioration de l’infrastructure et la gestion du réseau électrique

Afin de maximiser l’efficacité de la réglementation PEB, l’évolution de la méthode de calcul de la Performance Énergétique des Bâtiments tiendra compte du contexte, des avancées technologiques et d’une échelle plus large que celle de l’unité PEB ou du bâtiment. La valorisation des chaudières biomasse, les réseaux de chaleur et l’énergie renouvelable produite hors site feront partie de la réflexion, de même que la prise en compte des spécificités des projets multi-résidentiels.
Par ailleurs, une imposition d’intégration de renouvelable dans les bâtiments neufs ou les grosses rénovations sera envisagée (voir chapitre « 3.1.2. Energie Renouvelable »).

3.2.7. Autres mesures pour le secteur tertiaire

Obligation de service public relative à l’éclairage communal

Les GRD doivent se concentrer prioritairement sur le remplacement des luminaires âgés de plus de 10 ans, et tiennent également compte dans leur plan de la nécessité de remplacer prioritairement les technologies d’éclairage public qui ne seront plus commercialisées à courte et moyenne échéances du fait notamment de l’application du règlement technique européen « ECODESIGN ». Le programme de remplacement doit permettre une modernisation du parc en 10 ans, la fin du remplacement étant prévue pour le 01/01/2030 au plus tard. A terme, l’intégralité des installations d’éclairage public sera équipée des technologies LED les plus adaptées.

Soutien et accompagnement des entreprises privées du tertiaire, notamment pour l’amélioration de la performance énergétique des process

A côté du programme UREBA mentionné au point 3.2.2 ci-dessus et ciblant spécifiquement le secteur public et non marchand, la Wallonie poursuivra son accompagnement et son soutien aux entreprises privées du tertiaire :

- Réseau de facilitateurs chargés de l’information et de l’accompagnement des porteurs de projet du tertiaire et des PME
- Programme Amure et Chèques Entreprises pour des subsides à l’audit des PME-TPE,
- Subventions UDE pour les améliorations énergétiques du process, la cogénération et la production renouvelables
- Nouvelles primes AMURE pour l’amélioration de l’isolation, de la ventilation, de l’éclairage et des chambres froides dans les commerces et la restauration
- Financement Novallia pour les PME et TPE qui s’investissent activement dans la transition énergétique

Les grandes entreprises privées du secteur tertiaire sont, tout comme leurs consœurs de l’industrie, soumises à l’obligation d’audit énergétique « article 8 ».
3.2.8. Industrie non-ETS

Cette mesure est liée à l’amélioration de l’efficacité énergétique, la décarbonation des vecteurs énergétiques, l’amélioration de la flexibilité de la demande d’énergie.

A plus long terme, un fuel switching important vers l’électricité et la chaleur renouvelable voire aussi, à plus long terme, vers les gaz de synthèse comme l’hydrogène ou le gaz naturel de synthèse obtenu par méthanation de l’hydrogène doit être poursuivi, en parallèle d’une production d’énergie en cours de décarbonation.

Le recours à divers outils (pour certains transversaux au secteur industriel et commercial et au secteur ETS et non-ETS) pour la mise en œuvre de ces axes est décrit ci-dessous.

- **Outils réglementaires** :
 - modifier le facteur de conversion (de l’électricité) en énergie primaire en se basant sur les caractéristiques du contrat de fourniture pour ne pas pénaliser les technologies électriques du point de vue réglementaire et ainsi éviter les lock-in technologiques (ex. : choix du système de chauffage).
 - recommander la mise en place de la nouvelle norme ISO 14080. Comme l’explique l’Organisation Internationale de Normalisation, celle-ci « a pour objectif de fournir à tous les organismes impliqués dans l’action pour le climat un cadre pour le développement de méthodologies cohérentes, comparables et améliorées de lutte contre le changement climatique ».

- **Outils de soutien** :
 - Maintien et optimisation du système d’aide à l’investissement : Favoriser les investissements liés à un passage vers l’électricité ou le recours aux biocombustibles ou encore à plus long terme aux gaz synthétiques, à l’amélioration des processus de fabrication, à l’achat d’équipements plus performants ou à toute mesure améliorant l’efficience énergétique. Le principe de l’appel à projet pourrait être étudié dans ce cadre, et éventuellement financé par le fonds de transition énergétique. Le soutien financier est conditionné à une étude préalable pour sensibiliser à la priorisation des investissements, à des critères d’impact minimal (par exemple exprimés en gCO₂e/€ de soutien), éventuellement à la signature d’un contrat de...
performance énergétique45 et à des obligations de rapportage des consommations sur une durée de 5 à 10 ans pour assurer et suivre la qualité des projets ;

○ Les déductions fiscales pour investissements économiseurs sont dédiées aux investissements qui autorisent une plus grande électrification des procédés, à ceux qui permettent d’utiliser des combustibles neutres en carbone (biocombustibles, biogaz ou syngas issus de sources d’énergie décarbonée), à ceux qui permettent d’améliorer l’efficience énergétique. Elles visent à promouvoir les investissements qui permettent de réduire les émissions de gaz à effet de serre sans provoquer de lock-in technologique. Les déductions fiscales de 13,5 % pour les appareils de production combinée de forme et de chaleur et les appareils de combustion, de chauffage s’ils sont alimentés au mazout sont supprimées. Il sera veillé à une actualisation constante des catégories éligibles, en collaboration avec le fédéral ;

○ Dans le système de soutien à l’électricité verte, introduire un soutien aux installations productrice d’électricité à base de syngas et/ ou de chaleur fatale.

○ Développement d’ESCO46

○ Mettre en place un mécanisme de soutien spécifique à la production d’électricité par récupération de la chaleur fatale, permettant une meilleure utilisation de chaleur fatale via, par exemple :

- de ‘simples’ échangeurs pour optimiser la gestion des différents flux énergétiques ;
- des pompes à chaleur pour rehausser les niveaux de températures ;
- ou encore des productions d’électricité que ce soit via des cycles ‘vapeur’ classiques ou via des cycles ORC (Organic Rankine Cycles).

○ Maintien du mécanisme de prêt à taux réduit pour les entreprises (Novallia pour les PME innovantes et en transition vers une économie bas carbone

○ Obligation d’audit pour les grandes entreprises et incitants à l’audit pour les PME-TPE

○ Mise en œuvre de nouveaux accords de branche (AdB3) à partir de 2023 qui intègreront les spécificités des entreprises existantes et en définissant une méthodologie adaptée pour répondre au potentiel de chacune d’elle qu’il s’agisse du potentiel déjà présent mais également du potentiel que les évolutions technologiques seraient amenées à

45 Voir la mesure ESCO

46 Cf. Mesure EE- Développer un cadre juridique et réglementaire des CPE
induire dans les prochaines années. Un focus particulier sera apporté à une approche plus large que le seul périmètre de chaque site en AdB afin d’accroître efficacement les synergies entre sites et développer des modèles énergétiques intégrés. Une extension vers d’autres secteurs sera envisagée afin d’inclure l’intégralité des chaînes économiques wallonnes. Ce mécanisme de soutien aux futurs AdB sera redéfini à l’aune de la réglementation sur les aides d’État répondant efficacement aux impératifs économiques de l’industrie et aux ambitions climatique et énergétique de celle-ci. Un soutien spécifique au fuel-switch sera également envisagé.

- Plan carbone pour PMEs (volontaire dans un premier temps, obligatoires ensuite). Un accompagnement structurel à destination des PME sera mis en place afin de les accompagner dans leurs démarches.
- Mise en place de projets pilotes le cas échéant, d’un mécanisme de soutien à la production et l’utilisation de gaz renouvelables d’origine biologique ou non biologique dans le secteur industriel.

Fort de succès, il y a une volonté commune de la part des fédérations et du Gouvernement Wallon de continuer la collaboration. Sous réserve d’une validation formelle par la Direction générale Concurrence de la Commission européenne de la compatibilité des contreparties accordées dans le cadre de ces accords avec les règles européennes en matière d’aides d’État, ces dernières pourraient juridiquement être prolongées jusque fin 2023.

Il est à noter que ces accords de branche concernent principalement des industries reprises dans le système ETS. Les industries non-ETS ne représentent en 2018 que 9% des émissions de combustion couvertes par cette mesure.

3.2.9. Mesures visant à mettre en place des actions en faveur de l’exploitation du potentiel d’efficacité énergétique des infrastructures gazières et électriques

Dans le cadre de l’article 15.2 de la directive 2012/27/UE, les différents GDR ont mené une évaluation en ce qui concerne le potentiel d’efficacité énergétique de leurs infrastructures de gaz et d’électricité. L’ensemble des mesures évaluées par GRD sont reprises dans le rapport qui a été transmis à la Commission.

Par ailleurs, les décrets relatifs à l’organisation du marché du gaz et de l’électricité en Région Wallonne imposent que les gestionnaires de réseaux doivent prendre en compte l’efficacité énergétique lors de la planification de leurs investissements.

Ces derniers sont en effet tenus d’envisager des mesures d’efficacité énergétique, tel que précisé par l’article 11 §2 du décret “électricité”:

« Le gestionnaire de réseau est tenu de garantir l’exploitation, l’entretien et le développement du réseau pour lequel il a été désigné, dans des conditions socialement, techniquement et économiquement raisonnables, y compris les interconnexions avec d’autres réseaux électriques, en vue d’assurer la sécurité et la continuité d’approvisionnement dans le respect de l’environnement et de l’efficacité énergétique. Le Gouvernement précise la notion de conditions socialement, techniquement et économiquement raisonnables.

A cet effet, le gestionnaire de réseau est notamment chargé des tâches suivantes : .../...
10° examiner, lors de la planification du développement du réseau des mesures d’efficacité énergétique, de gestion de la demande et d’accueil des installations de production afin d’éviter l’augmentation ou le remplacement de capacités du réseau. »

Une disposition similaire est prévue à l’article 12 §2 du décret relatif à l’organisation du marché régional du gaz: "Le gestionnaire de réseau est tenu de garantir l’exploitation, l’entretien et le développement du réseau pour lequel il a été désigné, dans des conditions socialement, techniquement et économiquement raisonnables, y compris les interconnexions avec d’autres réseaux gaziens, en vue d’assurer la sécurité et la continuité d’approvisionnement dans le respect de l’environnement et de l’efficacité énergétique."

Ces mesures sont soumises au régulateur par l’intermédiaire des plans d’adaptation, telles que définis à l’article 15§1 du décret "électricité” :

« En concertation avec la CWaPE, les gestionnaires de réseau établissent chacun un plan d’adaptation du réseau dont ils assurent respectivement la gestion, en vue d’assurer la continuité d’approvisionnement, la sécurité et le développement de ce réseau dans des conditions socialement, techniquement et économiquement raisonnables. Le Gouvernement précise la notion de conditions socialement, techniquement et économiquement raisonnables.

Lors de l’élaboration de leur plan d’adaptation, les gestionnaires de réseaux envisagent notamment les mesures de gestion intelligente du réseau, de gestion active de la demande, d’efficacité énergétique, d’intégration des productions décentralisées et d’accès flexibles pour permettre d’éviter le renforcement de la capacité du réseau ».

Les règlements techniques précisent le planning et les modalités d’établissement et de mise à jour du plan d’adaptation. Le plan d’adaptation des réseaux de distribution couvre une période correspondante à la période tarifaire. Il est adapté au fur et à mesure des besoins et au moins tous les ans pour les deux années suivantes, selon la procédure prévue dans le règlement technique. Le plan d’adaptation du réseau de transport local est établi parallèlement au plan de développement envisagé à l’article 13, §1er, alinéa 2 de la loi « Electricité ».

Une disposition similaire est prévue pour le gaz.

3.2.10. Mesures de financement (dont support EU)

Financement de la stratégie rénovation

Les mesures relatives au financement de la stratégie rénovation sont décrites au chapitre « 3.2.2 : Stratégie de rénovation des bâtiments résidentiels et tertiaires ».
Financement d’initiatives locales

Le projet POLLEC vise à apporter du soutien financier et méthodologique aux communes qui, volontairement, souhaitent mettre en place une Politique Locale Énergie Climat dans le cadre de la Convention des Maires. La Convention des Maires est une initiative européenne permettant aux autorités locales et régionales de s’engager à réduire de plus de 20% leurs émissions de Gaz à Effet de Serre à l’horizon 2020 et de plus de 40 % à l’horizon 2030.

Trois appels à candidature ont été lancés par la Wallonie depuis 2012.

Le projet pilote a permis à 16 communes de recevoir une subvention pour un accompagnement externe par appel d’offre afin de développer un Plan d’Actions Énergie Durable et Climat (PAEDC).

Dans le cadre de la deuxième campagne, 11 communes ont rédigé un PAEDC tandis que 6 structures supra-communales (province, intercommunales, GAL) ont été subventionnées afin d’accompagner les communes (62 communes au total) dans la réalisation de leur PAEDC sur leur territoire. Les communes subventionnées dans le cadre du projet-pilote ont également participé à cette 2ème campagne en étudiant la possibilité de mettre en place des installations de production d’énergie renouvelable via des mécanismes de financement innovant. Un retour d’expérience sur ces mécanismes sera effectué auprès de l’ensemble des communes wallonnes à l’automne 2018.

Une troisième campagne a été lancée en novembre 2016. Celle-ci rassemble 79 communes et a pour objectif de permettre à de nouveaux territoires d’entrer dans une dynamique de transition énergétique.

A la suite de ces trois campagnes, un total d’environ 160 communes se seront donc engagées dans la Convention des Maires et auront réalisé un PAEDC, soit plus de 60 % des communes en Wallonie.

Des mesures seront prises par la Région wallonne afin d’accompagner la mise en œuvre des PAEDC par les autorités locales.

Fiscalité

Une réflexion d’ensemble devra être menée sur le levier fiscal.

Une révision de la fiscalité en vue d’assurer une cohérence du signal prix et d’internaliser les externalités négatives est nécessaire (principe de pollueur-payeur).

Pour rappel, une réforme de la fiscalité et de toute forme de prélèvement et de soutien public vise à offrir des signaux prix cohérents avec les objectifs énergétiques et climatiques. Une réforme ne peut être efficace que si elle s’accompagne d’un paquet plus large de mesures qui rendent les alternatives moins carbonées disponibles et accessibles. L’ensemble des mesures sont articulées pour répondre à une logique d’accompagnement progressif vers un
signal prix adapté et prévisible qui devra prendre en compte la capacité financière (et surtout de la non capacité) des protagonistes à s’adapter au signal prix. Pour rappel et à titre d’exemple, la stratégie rénovation devra prioritairement viser les ménages précarisés afin qu’ils puissent anticiper toute évolution de la fiscalité.

Les différentes mesures évoquées ne peuvent être mises en place de manière isolée par la région. La plupart des mesures nécessitent une collaboration étroite avec le fédéral et les autres régions, soit parce que la compétence est fédérale ou partagée, soit parce qu’il y a lieu de veiller à l’harmonisation des régimes entre régions (et éviter de créer des distorsions). Toutes ces mesures doivent donc être menées en étroite collaboration avec les autres entités.

L’impact des mesures fiscales sera étudié du point de vue économique (compétitivité, ...) et social (précarité, ...) afin de définir une fiscalité juste et équitable sur le plan social et environnemental.

Par ailleurs, une attention particulière sera portée à la neutralité budgétaire de ces mesures pour les différents niveaux de pouvoir.

Les mesures suivantes seront prises :

1/ Une analyse complète de l’ensemble de la fiscalité et des dépenses fiscales sera menée afin d’identifier les signaux prix contre-productifs par rapport aux objectifs climatiques et environnementaux. Un cadre global de la fiscalité climatique et environnementale sera établi afin de rectifier les signaux (assurer un signal prix juste) dans les secteurs concernés.

2/ indépendamment de ce cadre global :

- Dans le bâtiment\(^47\)

 o La modulation des droits d’enregistrement, de succession et de donation en fonction de la performance climatique et environnementale du bien sera étudiée en tenant compte de la capacité financière des ménages ;

 o L’utilisation du précompte immobilier pour endetter le bâtiment\(^48\) lors de la réalisation de travaux permettant d’augmenter la performance énergétique du bâtiment sera analysée quant à ses implications légales, juridiques et financières ;

- Dans le transport

 o Une modulation de la Taxe de Mise en Circulation et de la Taxe de Circulation en fonction de l’efficience climatique et environnementale du véhicule et de sa masse sur la puissance sera mise en place ;

\(^{47}\) Rappel de certaines éléments repris dans la stratégie de financement de la stratégie rénovation

\(^{48}\) Passage de la dette de propriétaire à propriétaire
o La mise en œuvre d’une prime pour vélo (en ce compris vélo cargo) et micro-mobilité électrique sera étudiée ;

o Le plafonnement des montants déductibles pour les déplacements professionnels sera étudié avec l’autorité fédérale, afin de tenir compte de l’efficence climatique et environnementale des véhicules ;

o La taxation des pistolets dispensant des carburants alternatifs (taxe régionale sur les automates) sera suspendue afin de soutenir l’installation de pompes LNG/CNG ;

o Une réflexion sera menée avec les autres niveaux de pouvoir sur la fiscalité sur le CNG, l’hydrogène et les véhicules électriques afin de permettre d’affiner les objectifs wallons en matière de développement des carburants alternatifs ;

• De manière transversale
 o Une déduction fiscale pour investissement rationnel de l’énergie sera étudiée avec l’autorité fédérale pour les entreprises installant des infrastructures pour carburants alternatifs (bornes de rechargement électrique, pompes CNG, LNG ou H2) ;

Investissements wallons

A partir de 2020, la Wallonie vise à investir durablement dans la transition climatique et énergétique via diverses actions qui seront détaillées dans les prochains mois. Citons de manière non exhaustive :

- Fonds KYOTO affecté notamment à la transition énergétique des entreprises, au financement climatique international et au déploiement de bornes électriques : 111 millions €
- Renforcement du maillage écologique via la plantation de haies, d’arbres et la création d’aires protégées : +7,3 millions € (budget doublé)
- Mesures d’encouragement aux alternatives à la voiture (marche à pied, vélo, bus et transports partagés) : 80 millions €
- Augmentation de l’offre de bus tant en zones urbaine que rurale : 3,7 millions €
- Verdissement de la flotte de bus (achat de bus fonctionnant à l’hydrogène, à l’électricité et hybrides) : 4,5 millions €
- Mise en œuvre progressive de la gratuité des bus avec, comme première étape, une diminution tarifaire des abonnements des 18-24 ans et des publics précarisés : 5,4 millions €
- Rénovation des logements publics : 100 millions €

3.3. Marché interne de l’énergie

3.3.1. Adéquation du système électrique et augmentation de la flexibilité locale du système énergétique pour permettre notamment la maximisation de la capacité d’accueil des énergies renouvelables

Mesures relatives au marché de la flexibilité

Les gains potentiels de l’utilisation de flexibilité par les GRD varient selon les réseaux, et selon les hypothèses prises dans les différentes études. Globalement, ces gains liés à l’utilisation de la flexibilité par les GRD sont de deux sortes : réduction des pertes sur le réseau et réduction des besoins d’investissement dans les infrastructures.

Il est considéré que le marché lui-même pourra stimuler le déploiement de solutions flexibles, de stockage et d’utilisation adaptée des véhicules électriques. Il sera nécessaire que toutes les mesures liées à la flexibilité se fassent en accord avec les prescrits des Directives (SER et Réseau). Les mesures visées veillent à la mise en place d’un cadre propice au déploiement de ces solutions :

- Opérationnalisation du cadre relatif à la flexibilité tel que fixé par le décret du 19/07/2018 (règlements techniques, communication en vue de stimuler, évolution du rôle des GRDs, délivrance par la CWaPE des licences de fourniture de services de flexibilité sur base de l’AGW du 28 mars 2019, …) ;
- Mise en place d’un cadre favorisant le stockage centralisé et décentralisé : octroi des permis ; modification de la tarification (tarifs à l’injection et au prélèvement inappropriés) ; levée des obstacles économiques et administratifs ;
- Planification par les GRDs de l’évolution des besoins en flexibilité et encadrement des modalités d’appel de la flexibilité par les GRDs ;
- Planification des infrastructures de recharge des véhicules électriques et encadrement des opérations de charge et décharge. Un des plus grands enjeux pour les réseaux de distribution est l’augmentation du nombre de véhicules électriques dont la recharge peut être source d’une augmentation significative de la pointe.

Cette mise en œuvre de solutions doit pouvoir être réalisée en fonction de leur faisabilité technique et en tenant en compte la situation des ménages et sur une base volontaire.
Mesures en matière d’évolution des réseaux et de réseaux intelligents

- Mise en œuvre du déploiement des compteurs intelligents conformément au cadre, rythme et principes déterminés dans le décret du 19 juillet 2018 accompagné d’une campagne de communication adéquate ainsi que d’un accompagnement du client lors de la pose du compteur. (Cf mesure sur les compteurs intelligents);

- Mise en place d’un cadre réglementaire pour les projets pilotes innovants
Le décret-programme du 17 juillet 2008 a introduit dans le décret électricité du 12 avril 2001 la possibilité pour la CWaPE d’autoriser des projets pilotes innovants constituant des réseaux alternatifs au réseau public tout en utilisant et rémunérant de manière équitable le réseau de distribution. Il s’agit, plus précisément, dans un cadre bien défini, limité dans le temps et contrôlé de suspendre temporairement certaines barrières (tarifs, taxes, obligations, etc.) afin de tester et de documenter, en vue d’une généralisation à l’échelle wallonne, la pertinence et la performance de projets ayant pour objet la mise en œuvre de solutions technologiques optimales pour le marché wallon de l’électricité.
Les projets pilotes pouvant être autorisés sont en droite ligne avec la politique énergétique européenne puisqu’ils doivent notamment avoir trait aux domaines suivants : efficacité énergétique, flexibilité de la demande, optimisation du développement, de la gestion de la production décentralisée et de la promotion de l’autoconsommation locale et des circuits courts. Cette nouvelle possibilité répond à plusieurs demandes du secteur et permettra de mieux encadrer, le cas échéant, ces différentes thématiques afin d’optimiser leur développement.

- Les mesures relatives à l’autoconsommation collective et aux communautés d’énergies renouvelables explicitées ci-avant visent également à la smartisation du réseau.

Mesure de coordination GRD- GRT

Une mauvaise coordination entre les GRT et les GRD peut impacter la sécurité du système, son efficacité ou empêcher l’exploitation des ressources de flexibilité. Il est donc très important d’assurer une bonne coordination entre ces acteurs. Celle-ci peut être mise en place via un marché commun où GRT, GRDs, BRPs peuvent se procurer des services de flexibilité, via un système de priorisation entre les équilibrages locaux et globaux ou encore en obligeant le GRT à consulter les GRD en ce qui concerne la gestion du système.

Tarification

Actuellement les tarifs bi-horaires visent à orienter le comportement des consommateurs en influençant les périodes pendant lesquelles ils vont veiller à
consommer ou ne pas consommer. Des tarifs plus fins, avec plus de plages horaires viennent en continuité de ce cadre. La définition de ces tarifs devra tenir compte des exigences de prévisibilité et de compréhension de ceux-ci pour les ménages.

En vue d’atteindre l’objectif de développement de la flexibilité, il est nécessaire d’adapter la tarification avec de multiples objectifs :

- Le système de tarification, parmi d’autres facteurs, doit soutenir le déplacement des consommations ;
- Le système de rémunération des GRD doit les inciter à investir dans les solutions les plus efficaces économiquement ; y compris les solutions de flexibilité.
- La méthodologie tarifaire doit contribuer au développement des communautés d’énergie renouvelable tout en assurant l’équilibre entre la solidarité de la couverture des coûts globaux des réseaux ainsi que de la contribution aux taxes, surcharges et autres frais régulés et l’intérêt de participer à une telle opération ;
- la méthodologie tarifaire ne doit pas renforcer la dualisation du marché et ne pas impacter négativement les ménages qui ont fait le choix de ne pas recourir à la flexibilité, aux tarifs dynamiques, etc. ou qui sont dans l’incapacité d’y recourir ;
- la méthodologie tarifaire doit veiller à assurer l’équilibre entre la solidarité de la couverture des coûts globaux des réseaux ainsi que de la contribution aux taxes, surcharges et autres frais régulés et le développement des régimes particuliers.

Un groupe de travail a été mis en place en vue de définir les nouvelles lignes directrices de la méthodologie tarifaire, qui devra s’inscrire dans les lignes directrices des aides d’Etat.

Mesures relatives au déploiement du power-to-X 49

La production d’hydrogène évoluera avec le marché et l’augmentation du taux de pénétration des énergies variables (d’ici 2030, la capacité renouvelable variable belge pourrait être près de 3 fois supérieure au talon de consommation, ou base load). En termes de mesures, il y a lieu de commencer par

- L’établissement d’une feuille de route du déploiement du power-to-X ;
- La réalisation de projets pilotes ;

49 Power to x (ou « P2X ») qualifie la transformation d’électricité en un autre vecteur énergétique. Ce vecteur « X » peut être de la chaleur (dans le cas du « Power to Heat » (2)) qui satisfait par exemple des besoins industriels ou alimente des réseaux de chaleur. Il peut également être un gaz de synthèse (« Power to Gas » (3)) : de l’hydrogène, pour des usages de mobilité, ou du méthane (après méthanation) qui peut lui-même être injecté dans le réseau gazier pour des besoins industriels, de chauffage ou de mobilité.
• Mettre en place un cadre favorable au P-to-X

3.3.2. Protection du consommateur (précarité)

Le Gouvernement accorde une très grande importance au fait que l’énergie reste abordable. La transition énergétique est indispensable mais elle ne peut se faire au détriment des citoyens. Elle ne doit pas renforcer les inégalités et elle doit veiller à être accessible à tous et à ne pas nuire aux ménages qui ne peuvent ou ne veulent pas recourir à des instruments complexes tels que les tarifs dynamiques ou encore la flexibilité de leur consommation.

La libéralisation du marché de l’énergie a déjà montré qu’elle était trop complexe pour de nombreux ménages et ne leur permettait pas nécessairement de profiter de solutions techniques et de tarifs avantageux. D’après la CREG, chaque année 360.000 ménages dépensent 600 euros de trop pour leur énergie car ils ne font pas le bon choix de fournisseur ou de tarifs. Le Gouvernement étudiera la possibilité d’instaurer une fourniture de base en gaz et électricité pour les consommateurs résidentiels afin de leur offrir une énergie à un tarif abordable sans qu’ils ne doivent entreprendre des démarches complexes.

Le Gouvernement plaidera pour une évaluation de la libéralisation de l’énergie, au niveau européen, afin d’identifier si des mesures correctrices doivent être prises pour rencontrer au mieux les objectifs environnementaux, économiques et sociaux.

L’ensemble des politiques énergétiques fera l’objet d’une attention renforcée pour les ménages et en particulier les plus précarisés. Par ailleurs, le Gouvernement adoptera un nouveau plan stratégique de lutte contre la pauvreté et de réduction des inégalités qui portera une attention particulière à l’accès à l’énergie. L’énergie est un bien vital et un droit fondamental dont l’accès doit être garanti à tous.

Mesures tarifaires en faveur des clients protégés

Il y a deux catégories de clients protégés :

- D’une part les clients protégés fédéraux qui bénéficient du tarif social auprès de tout fournisseur de clients résidentiels ;
- D’autre part, les clients protégés régionaux qui bénéficient du tarif social auprès de leur GRD lorsqu’ils sont fournis par leur gestionnaire de réseau qui intervient alors comme fournisseur social ;

Les clients protégés bénéficient du tarif social établi semestriellement par la CREG sur la base de l’offre commerciale (parmi les fournisseurs) la plus avantageuse.

La Région wallonne a étendu la notion de clients protégés, définies par l’État fédéral, pour tenir compte d’autres situations problématiques de ménages précarisés.

Les clients protégés régionaux comprennent les bénéficiaires (soit la personne titulaire du contrat de fourniture, soit une personne ayant le même domicile que le titulaire du contrat) :

- d’une décision de guidance éducative de nature financière auprès du CPAS ;
- d’une médiation de dettes auprès d’un CPAS ou d’un centre de médiation de dettes agréé ;
- d’un règlement collectif de dettes.

Pour bénéficier du tarif social le client protégé au sens régional doit s’adresser à son fournisseur qui est chargé de le transférer chez le gestionnaire de réseau de distribution auquel il est raccordé. Le gestionnaire de réseau agit alors en tant que fournisseur social du client protégé.

En Wallonie, on constate une augmentation du public précarisé, comme le montrent les chiffres ci-dessous.

Evolution du nombre de clients protégés et du tarif social

<table>
<thead>
<tr>
<th></th>
<th>02.2013</th>
<th>02.2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de clients sociaux (clients protégés)</td>
<td>BE</td>
<td>VL</td>
</tr>
<tr>
<td></td>
<td>394.877</td>
<td>196.076</td>
</tr>
<tr>
<td>Nombre de clients sociaux fédéraux</td>
<td>384.376</td>
<td>196.076</td>
</tr>
<tr>
<td>Nombre de clients sociaux régionaux (chez les GRD)</td>
<td>10.501</td>
<td>0</td>
</tr>
<tr>
<td>Proportion clients sociaux/nombre total de clients résidentiels (en %)</td>
<td>8.25</td>
<td>7.11</td>
</tr>
<tr>
<td>Tarif social (all in en €/kWh)</td>
<td>16.76</td>
<td>16.74</td>
</tr>
</tbody>
</table>

Tableau 17 Evolution du nombre de clients protégés et du tarif social Electricité

52 Données issues des tableaux de bord mensuels de la CREG (février 2013 et 2017)
<table>
<thead>
<tr>
<th>GAZ</th>
<th>02.2013</th>
<th>02.2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BE</td>
<td>VL</td>
</tr>
<tr>
<td>Nombre de clients sociaux (clients protégés)</td>
<td>225.883</td>
<td>115.948</td>
</tr>
<tr>
<td>Nombre de clients sociaux fédéraux</td>
<td>218.510</td>
<td>115.948</td>
</tr>
<tr>
<td>Nombre de clients sociaux régionaux (chez les GRD)</td>
<td>7.383</td>
<td>0</td>
</tr>
<tr>
<td>Proportion clients sociaux /nombre total de clients résidentiels (en %)</td>
<td>8.46</td>
<td>6.76</td>
</tr>
<tr>
<td>Tarif social (all in en c€/kWh)</td>
<td>4.46</td>
<td>4.46</td>
</tr>
</tbody>
</table>

Tableau 18 Evolution du nombre de clients protégés et du tarif social Gaz
Mesures liées aux compteurs et au suivi de la consommation

Compteurs à budget

Les compteurs à budget sont identifiés comme outil de maîtrise de l’endettement des ménages, mais ne soutiennent aucunement ces derniers dans la réduction structurelle de leur consommation par le biais d’une amélioration de leur logement ou de leurs équipements. Les éléments techniques à disposition des GRD ne permettent par ailleurs pas d’avoir une image fiable de la situation de terrain en termes de coupures de l’alimentation d’électricité ou de gaz vécues par les ménages.

Une analyse complémentaire aux études déjà disponibles sera réalisée, et le dispositif d’encadrement des compteurs à budget sera revu afin de limiter le recours à ce dispositif aux cas où leur pertinence est démontrée.

Poursuivre l’encadrement juridique du déploiement des compteurs intelligents

Le décret encadrant l’utilisation, les fonctionnalités et le déploiement des compteurs intelligents électriques a été adopté par le parlement wallon le 19 juillet 2018. Il sera mis en œuvre par le biais d’arrêtés d’exécution et de règlements techniques.

Il prévoit un déploiement segment des compteurs intelligents sur le territoire wallon :

L’encadrement juridique prévoit qu’au plus tard le 1er janvier 2023, l’installation et l’activation de la fonction communicante d’un compteur intelligent ait lieu systématiquement dans les cas suivants, à moins que cela soit techniquement impossible ou non économiquement raisonnable :
1° En fonction des résultats de l’étude menée, la possibilité de l’appliquer à un client résidentiel déclaré en défaut de payement sera évaluée ;
2° lorsqu’un compteur est remplacé ;
3° lorsqu’il est procédé à un nouveau raccordement ;
4° lorsqu’un utilisateur du réseau de distribution le demande.

Au plus tard au 31 décembre 2029, le gestionnaire de réseau de distribution atteint l’objectif de quatre-vingts pour cent de compteurs intelligents installés sur son réseau pour les utilisateurs de réseaux répondant à l’une des caractéristiques suivantes :
1° la consommation annuelle standardisée est supérieure ou égale à 6 000 kWh ;
2° la puissance électrique nette développable de production d’électricité est supérieure ou égale à 5 kW ;
3° les points de recharge ouverts au public.

Mesures de soutien visant à réduire la consommation ou la facture

Sensibilisation

Divers outils de sensibilisation et de soutien des personnes précarisées ont été mis en place : plans d’action préventive pour l’énergie (PAPE), tuteurs énergie et formation des assistants sociaux.

Les actions des CPAS dans ce cadre portent sur le suivi individualisé de ménages précarisés bénéficiaires ou non du CPAS. En complément, des séances d’information et de sensibilisation à destination de ce public-cible sont également organisées.

Pour 2017-2018, 121 PAPE ont bénéficiés d’un subside pour un montant global de 2.752.456€. Pour 2019-2020, 134 PAPE ont bénéficié d’un subside global de 2.700.000€. Dans le cadre des PAPE, annuellement, plus de 15.000 ménages
bénéficient d’une intervention individuelle. En outre, près de 6.000 ménages bénéficient d’un suivi à domicile permettant un accompagnement pour réduire leur consommation/leur facture.

Les tuteurs « énergie » réalisent des actions autour de 9 axes principaux, à savoir :

- poser un diagnostic, l'expliquer, émettre des recommandations, relayer et responsabiliser les bénéficiaires;
- accompagner les publics fragilisés dans leurs démarches en vue de réaliser des petits ou gros travaux économiseurs d'énergie. Cette mission induit de se rendre chez les usagers;
- sensibiliser à l'Utilisation Rationnelle de l’Énergie (URE);
- informer le public CPAS. Il s'agit alors de donner une information cohérente avec les actions du service social;
- expliquer les résultats de l'audit énergétique s’il a pu avoir lieu;
- négocier avec les propriétaires;
- informer sur les dispositifs existants et les processus administratifs;
- rendre visible et lisible la situation des personnes (ses tenants et aboutissants) et analyser la situation d'un point de vue technique, administratif et comportemental avec tous les intervenants;
- participer à la gestion durable de l’institution, c’est-à-dire mettre en place une sensibilisation de tous au sein de l’institution/apporter une réflexion et induire des changements d’attitudes.

Primes

En outre, la Région wallonne accorde une subvention aux ménages à revenus modestes pour la réalisation, dans leur logement, de travaux qui vont leur permettre d’utiliser plus rationnellement l’énergie (Primes MEBAR). Il s’agit d’une aide d’urgence. Cela peut être le remplacement de châssis ou de portes extérieures, des travaux d’isolation, l’installation d’un poêle, le gainage d’une cheminée, le placement d’une chaudière ou d’un chauffe-eau, ...

La subvention peut aussi être accordée à un ménage ou un demandeur vivant dans une caravane ou un chalet situé dans un camping ou un parc résidentiel de week-end.

Si le demandeur est locataire, il doit obtenir au préalable l'accord de son propriétaire.

Pour obtenir la subvention, le demandeur doit s'adresser au CPAS de sa commune qui initiéra la procédure.

La prime s'élève à un maximum de 1.365 € TVAC pour les ménages dont les ressources sont inférieures ou égales au montant du revenu d'intégration majoré de 20 %.
Un montant de 1,5 million est réservé annuellement au Budget général des dépenses de la RW. Ce montant annuel prévu au budget initial est généralement majoré lors de la modification budgétaire et le budget peut atteindre 1,75 million. En moyenne, environ 1.200 ménages bénéficient annuellement des primes MEBAR. Outre les primes MEBAR, la Région octroie également des primes « énergie ». Celles-ci ont été majorées pour les personnes à faibles revenus afin de les aider à améliorer leur logement en vue de réduire leurs consommations énergétiques. Par exemple, pour un ménage ayant un revenu inférieur ou égal à 23.000€, la prime est multipliée par 6. Les primes sont octroyées pour les investissements suivants : isolation thermique du toit, isolation thermique des murs, isolation thermique du sol, installation de systèmes de chauffage et/ou eau chaude performants, réalisation d'un audit énergétique.

3.3.3. Amélioration de la compétitivité

Plusieurs mesures sont prises ou renforcées afin d'améliorer la compétitivité des entreprises

- La mesure « carbon leakage » est une mesure autorisée depuis 2012 par l'Union européenne. Elle permet de compenser financièrement des entreprises qui ont perdu en compétitivité par rapport aux entreprises internationales qui n’ont pas été soumises à l’échange de quotas d’émissions européens (essentiellement les secteurs métallurgique, sidérurgique, chimique, pharmaceutique et du papier). Cette mesure est opérationnelle jusque 2020 et devrait être prolongée ;

- Diverses mesures sont prises pour accompagner les entreprises, en ce compris les TPE et PME (via Novallia et la SOGEPARR notamment), à réduire leur consommation d’énergie : prêt avantageux ; accompagnement et expertise ; aides à l’investissement ; ...

3.3.4. Mesures liées au demand response, tarifs dynamiques

Un décret encadrant la flexibilité sur le réseau de distribution et les acteurs y liés a été adopté par le parlement wallon le 19 juillet 2018.

En exécution de ce décret, un arrêté relatif à la licence de fourniture de services de flexibilité a été adopté par le Gouvernement le 28 mars 2019.

Sa mise en œuvre complète nécessite encore l’adaptation du règlement technique relatif aux réseaux de distribution d’électricité.

Par ailleurs grâce au déploiement des compteurs intelligents et en conformité avec la nouvelle directive Marché, une tarification dynamique sera étudiée.
3.4. **Recherche, Innovation, Compétitivité**

3.4.1. **Politiques et mesures permettant d’atteindre les objectifs d’allocation de fonds**

Notre mode de développement et le type de société souhaité pour les générations futures doivent définir les choix stratégiques que nous posons aujourd’hui. C’est la raison pour laquelle cinq thèmes prioritaires ont été définis au niveau européen pour concentrer les investissements en matière de recherche, à savoir le développement durable, les énergies renouvelables, la recherche dans le domaine de la technologie, le vieillissement et la qualité de vie, et la santé.

Ces thèmes stratégiques répondent à des enjeux sociétaires clairement identifiés et correspondent à des domaines économiques émergents et à un fort potentiel d’innovation. Les pôles de compétitivité, mis en place depuis 2005 en Wallonie, BIOWIN (pour les sciences de la vie), SKYWIN (Aéronautique et espace), WAGRALIM (pour les agro-industries), LOGISTICS EN WALLONIE (pour la logistique), MECATECH (pour l’ingénierie mécanique) et GREENWIN (pour les technologies environnementales), rassemblent les forces de travail wallonnes autour de ces thèmes. Ils s’appuient sur le tissu industriel wallon existant mais aussi sur les expertises et connaissances en matière de technologie, de recherche et d’innovation pour le redéploiement économique de la Wallonie en créant de nouvelles activités répondant aux défis de la société. Ces pôles de compétitivité reposent sur un partenariat entre universités, hautes écoles, centres de recherche et entreprises de toutes tailles. La concentration des efforts de recherche aboutit également à l’internationalisation des acteurs wallons au travers de leur participation à des programmes communs de recherche (Horizon 2020, ERA-NET, EUREKA ...) ou d’infrastructures de recherche (ESFRI).

En particulier, des clusters thématiques ont également été établis dans le domaine des énergies renouvelables et de l’efficacité énergétique. Ils rassemblent les acteurs de la recherche afin de mettre en avant des projets de recherche énergétique. Il s’agit des clusters : "TWEED" pour les énergies renouvelables ainsi que « Cap construction » et « Eco-Construction » pour la construction durable et l’éco-construction des bâtiments. En complément, le pôle de compétitivité GreenWin vise l’innovation dans la chimie verte et les matériaux durables (y compris leurs applications dans les bâtiments à énergie nulle ou quasi nulle).

La Wallonie soutient le déploiement industriel des résultats de l’innovation en participant aux IPCEI (projets importants d’intérêt commun européen) sur les batteries et sur l’hydrogène. Les IPCEI permettent aux États membres de soutenir le déploiement industriel au-delà des limites imposées pour les aides d’État.

Plus avant, le budget wallon affecté à la recherche et l’innovation est géré essentiellement au niveau du SPW « Economie, Emploi et Recherche ». Chaque année, un recensement des projets est effectué en vue de rapportage au sein de l’Agence internationale de l’Énergie selon une méthodologie propre et une clé de répartition spécifique dans le cadre de projets complexes ou indirectement liés à l’énergie.
Pour l’année indicative 2017 (dernier rapportage), la répartition des budgets affectés à la recherche à vocation énergétique s’établit comme suit :

<table>
<thead>
<tr>
<th>Wallonie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIB 2015</td>
<td>95.100.000.000 €</td>
</tr>
<tr>
<td>budget public wallon recherche</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2018</td>
<td>321.000.000 €</td>
</tr>
<tr>
<td>budget privé wallon recherche</td>
<td>2.000.000.000 €</td>
</tr>
<tr>
<td>budget public/privé wallon pour la recherche</td>
<td>2.321.000.000 €</td>
</tr>
<tr>
<td>budget public wallon recherche énergie</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2017</td>
<td>44.451.000 €</td>
</tr>
<tr>
<td>budget reçu de l'Europe, fonds structurels,</td>
<td></td>
</tr>
<tr>
<td>pour la recherche énergie</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2017</td>
<td>1.900.000 €</td>
</tr>
<tr>
<td>budget reçu de l'Europe, Horizon 2020,</td>
<td></td>
</tr>
<tr>
<td>pour la recherche énergie</td>
<td></td>
</tr>
<tr>
<td>moyenne 2014-2019</td>
<td>2.000.000 €</td>
</tr>
<tr>
<td>budget privé wallon pour la recherche énergie</td>
<td>200.000.000 €</td>
</tr>
<tr>
<td>budget public wallon-Europe/privé pour la</td>
<td></td>
</tr>
<tr>
<td>recherche énergie</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2017</td>
<td>248.351.000 €</td>
</tr>
<tr>
<td>budget public wallon recherche climat et</td>
<td></td>
</tr>
<tr>
<td>environnement</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2017</td>
<td>pas disponible</td>
</tr>
<tr>
<td>budget reçu de l'Europe, fonds structurels,</td>
<td></td>
</tr>
<tr>
<td>pour la recherche climat et environnement</td>
<td></td>
</tr>
<tr>
<td>moyenne 2012-2017</td>
<td>pas disponible</td>
</tr>
<tr>
<td>budget reçu de l'Europe, Horizon 2020,</td>
<td></td>
</tr>
<tr>
<td>pour la recherche climat et environnement</td>
<td></td>
</tr>
<tr>
<td>moyenne 2014-2019</td>
<td>1.400.000 €</td>
</tr>
<tr>
<td>budget privé wallon pour la recherche climat</td>
<td></td>
</tr>
<tr>
<td>et environnement</td>
<td>pas disponible</td>
</tr>
</tbody>
</table>

Il est également bon de rappeler que, dans le budget de 110 millions :

- Au-delà du budget énergie, un budget est considéré pour la recherche en matière de climat et d’environnement (une petite partie du budget pourrait donc dépendre de la DGO3 également, par exemple).

- Un recours plus important aux fonds européens est prévu à l’horizon 2030 pour minimiser l’impact sur le budget wallon.

Par ailleurs, la DPR prévoit que le Gouvernement vise à : « accroître les moyens publics investis dans le soutien à l’innovation, atteindre les objectifs européens visant les 3% du PIB investis dans la recherche et développement, et porter cet objectif au niveau européen à 4% d’ici 2035 et à 5% à l’horizon 2050, dont un tiers provenant du public ; » Un effort général sera à fournir, y compris dans la recherche énergie.
Coopération avec d’autres États membres dans ce domaine, y compris des informations sur la manière dont les objectifs et politiques du plan SET sont transposés dans le contexte national

a) The description of how SET Plan targets were taken into account when setting national objectives and identifying national energy R&I strategy

La mise en œuvre de la recherche énergétique se fait soit au moyen d’appels à propositions, soit au moyen d’aides, dites « guichet », dont les thèmes cadrent avec les priorités du SET-Plan et les potentialités de la communauté scientifique et industrielle wallonne (Cf. stratégie de spécialisation intelligente).

Le travail, effectué dans le contexte du SET-Plan pour définir les actions clés, les plans de mise en œuvre et les feuilles de route de R & I, est utilisé pour orienter les priorités wallonnes de R & I tenant compte des compétences technologiques de notre industrie et scientifiques de notre communauté de recherche.

La stratégie de spécialisation intelligente wallonne est en cours de révision. Une étude a été menée visant à croiser les forces wallonnes avec les axes de la recherche européenne. Les pôles de compétitivité ont été associés à ce travail pour lequel les entreprises ont été consultées, et sont associés à la mise en œuvre des priorités.

Des priorités pour l’énergie, le climat et la mobilité ont été identifiées :

- Communautés intelligentes / intégrées, dont les districts à énergie positive
- L’intégration des systèmes de stockage
- L’efficacité énergétique du bâtiment
- Les nouveaux carburants (y compris l’électricité) et les véhicules durables.
- La gestion et la valorisation du CO₂ dans les processus de production
- Les projections, prédictions et modélisations climatiques et les nouveaux services associés
- La gestion du trafic et du réseau
- Les technologies ferroviaires.

Ces priorités seront mises en œuvre au service du PNEC en synergie avec les « implémentation plans » correspondants des priorités du SET Plan.

Dans le cadre des « accords de branche » (Cf. 3.2.7 Industrie non ETS), les industries sont amenées à réduire leurs consommations énergétiques et à diminuer leurs émissions de CO₂. La mise en œuvre de la priorité stratégique « La gestion et la valorisation du CO₂ dans les processus de production » ainsi que la participation à l’action 6 « Energy efficiency in industry » du SET-Plan permettra d’inciter les industries à investir dans la recherche et l’innovation dans ce but.
La priorité stratégique « efficacité énergétique du bâtiment » sera mise en œuvre en synergie avec l’action 5 « Energy efficiency solutions for buildings » du SET-Plan, au service de la « Stratégie rénovation bâtiment long terme » Cf. point 3.2.2

La priorité stratégique « Communautés intelligentes / intégrées » comprend les districts à énergie positive, les communautés autonomes « énergies renouvelables », les systèmes et services de mobilité connectée, et l’apport de la numérisation au service de la flexibilité des réseaux d’énergie, de la gestion de la consommation/production (bâtiments, mobilité, services et espaces publics, voirie, ...) et du stockage d’énergie. Cette priorité sera mise en œuvre en synergie avec l’action 3.2 « Positive energy districts », l’action 4 « energy system », l’action 3.1 « energy consumers » du SET-Plan. Elle sera au service du point 3.2.5 « Activer les comportements pour réduire la consommation d’énergie dans le résidentiel » et notamment la mesure « lever les barrières », du point 3.2.6 « autonomie énergétique des bâtiments neufs » et du point 3.3 « Marché interne de l’énergie », 3.3.1 « Adéquation du système électrique et augmentation de la flexibilité locale du système énergétique pour permettre notamment la maximisation de la capacité d’accueil des SER ».

La priorité stratégique « L’intégration des systèmes de stockage » sera également mise en œuvre au service du marché interne de l’énergie. Les batteries y sont incluses.

La Région wallonne participe déjà au cas par cas à des ERA-NETS issus des priorités du SET Plan. Elle participera au « partenariat européen d’innovation » « Clean Energy Transition » du futur programme Horizon Europe.

La Région wallonne encourage via les NCP la participation aux appels des programmes Horizon 2020 et Horizon Europe. Horizon 2020 relaie notamment dans ses appels les thématiques proposées par l’European Battery Alliance.

La Région wallonne participe aux programmes de collaboration technologique de l’Agence Internationale de l’Énergie.

Les projets de recherche les plus pertinents à cet effet, subventionnés dans le cadre des programmes ci-dessus, s’inscriront dans les programmes de l’AIE, et

La Wallonie participe au programme « ETSAP ». L’outil « Times » est utilisé pour l’analyse et la compilation de scénarios énergétiques, et comme outil d’aide à la décision. Il pourra notamment être utilisé pour l’établissement de plans d’action dans la suite du PNEC.

La Belgique participe à d’autres programmes de collaboration technologique de l’AIE, auxquels la Région wallonne a accès mais ne participe pas directement.

Excepté la bioénergie, la recherche en production d’énergie à partir de sources renouvelables est le parent pauvre des politiques et mesures en recherche, innovation et compétitivité. Elle ne figure pas dans les priorités de la stratégie de spécialisation intelligente en cours de révision.

Cependant, dans une démarche bottom-up, à la demande du secteur industriel, la Wallonie pourra participer à l’action « Number one in renewables » du SET Plan.

b) The description of concrete partnerships that was a result of SET Plan work

La Région wallonne participe aux travaux des « implementation working groups » du SET Plan suivant ses priorités listées au point précédent.

Elle a participé aux actions ERA-NET Smart Grids, Solar, Smart Cities, aux ERA-NET Cofund SOLAR 2 et RegSYS (sur les systèmes énergétiques intelligents régionaux intégrés).

Elle participera à l’ERA-NET SES (Smart Energy System) - Storage sur la digitalisation des réseaux électriques.

Elle participera au partenariat européen d’innovation « cofund » « clean energy transition » du futur programme Horizon Europe.

c) Benchmarks for volumes of cooperation with SET Plan countries

Les budgets wallons engagés sont de l’ordre de 500.000 € par appel en moyenne. Le montant annuel réellement dépensé est inférieur. Il dépend en effet du taux de participation des acteurs wallons, et de leur sélection.

d) Other areas/schemes/instruments for international cooperation

Afin de préparer la participation de la Wallonie au programme cadre de recherche et d’innovation Horizon Europe, des groupes de travail ont été mis sur pied, rassemblant l’Administration et les acteurs de la recherche. Chaque groupe est dédié à un cluster du pilier 2 « Global Challenges and Industrial Competitiveness ». Le groupe de travail « Climate, Energy and Mobility » participe à l’élaboration de la nouvelle stratégie de spécialisation intelligente et est en interaction avec l’Administration concernant les consultations pour le programme Horizon Europe. L’objectif de ce groupe est d’améliorer la participation des acteurs de recherche
wallons aux programmes-cadres de recherche européens, afin de mieux les insérer dans la dynamique européenne, améliorer leur expertise et leur compétitivité, créer des synergies et leur ouvrir des marchés plus étendus.

La participation wallonne aux appels NER 300 n’a pas été couronnée de succès. La Wallonie promovra la participation des entreprises au Fonds Innovation alimenté par le système européen d’échange de quotas d’émissions (EU ETS), à commencer par le 1er appel de 2020.

3.4.3. Le cas échéant, mesures de financement dans ce domaine au niveau national, y compris le concours de l’UE et l’utilisation de fonds de l’UE

Les mesures générales de soutien à la recherche sont d’application pour la recherche – énergie : incitants fiscaux en faveur de la recherche & développement dont les crédits d’impôts, primes « Horizon 2020 » soutenant les PME dans la préparation, le dépôt et la négociation de projets collaboratifs de recherche et d’innovation (R&I).

Un effort particulier sera accompli afin de promouvoir, encourager et accompagner la participation des acteurs de recherche wallons aux programmes-cadres de recherche européens, à travers le groupe de travail Horizon Europe dont question ci-dessus. Le National Contact Point en fait bien sûr partie et en est un acteur important.

Enfin, la participation des entreprises au Fonds Innovation sera encouragée.

Concernant le budget régional, chaque année, un budget spécifique de 7.000.000 € sera dédié à un programme de recherche dans une thématique émergeant dans la future stratégie de spécialisation intelligente.
Section B : Base Analytique

4. SITUATION ACTUELLE ET PROJECTIONS SUR BASE DES POLITIQUES ET MESURES EXISTANTES

4.1. Evolution estimée des principaux paramètres exogènes influençant le système énergétique et les émissions de GES

i. Prévisions socio-économiques

<table>
<thead>
<tr>
<th>En Wallonie</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population au 1/01 ('000)</td>
<td>3590</td>
<td>3675</td>
<td>3745</td>
<td>3818</td>
<td>3887</td>
<td>3946</td>
</tr>
<tr>
<td>Nombre de ménages ('000)</td>
<td>1548</td>
<td>1610</td>
<td>1658</td>
<td>1710</td>
<td>1759</td>
<td>1798</td>
</tr>
</tbody>
</table>

L’évolution démographique est prise en compte sur base des perspectives du Bureau Fédéral du Plan afin de déterminer la croissance du nombre de ménages (et donc le besoin en logements).

ii. Changements sectoriels attendus, impactant le système énergétique et les émissions de GES

L’évolution de l’activité économique est prise en compte via des variables d’activité spécifiques à chaque sous-secteur industriel (taux de croissance annuel composé). Les fermetures d’outils et les nouveaux investissements sont pris en compte.

53 Bureau Fédéral du Plan,
54 Hypothèses relativement conservatrices
Tendances énergétiques, prix internationaux combustibles fossiles, prix carbone ETS, évolution du coût des technologies

<table>
<thead>
<tr>
<th>En € constant 2013/toe55</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pétrole (Brent)</td>
<td>75</td>
<td>85.1</td>
<td>93.8</td>
<td>97.8</td>
</tr>
<tr>
<td>Charbon</td>
<td>14.3</td>
<td>17.1</td>
<td>20.5</td>
<td>21.7</td>
</tr>
<tr>
<td>Gaz</td>
<td>48.3</td>
<td>52.2</td>
<td>56.8</td>
<td>60.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>En € constant 2013 €/tCO$_2$56</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU ETS Carbon price</td>
<td>15</td>
<td>22.5</td>
<td>33.5</td>
<td>42</td>
</tr>
</tbody>
</table>

Degrés jours : Les consommations des secteurs résidentiel et tertiaire sont normalisées sur base de 1870 *degrés jours* (moyenne 1991-2015).

55 Valeurs recommandées par la Commission Européenne/
Ton Oil Equivalent : 1toe = 41.868 GJ

56 Idem
Facteurs d’émission :

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Wallonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard coal</td>
<td>94,6</td>
</tr>
<tr>
<td>Cokes</td>
<td>108,2</td>
</tr>
<tr>
<td>Brown coal, lignite</td>
<td>101,2</td>
</tr>
<tr>
<td>Other solids (waste, …)</td>
<td>Variable</td>
</tr>
<tr>
<td>Natural gas</td>
<td>56,1</td>
</tr>
<tr>
<td>Cokes oven gas</td>
<td>47,7</td>
</tr>
<tr>
<td>Heavy fuel oil</td>
<td>77,4</td>
</tr>
<tr>
<td>Petroleum cokes</td>
<td>100,8</td>
</tr>
<tr>
<td>Light fuel oil, gas oil</td>
<td>74,1</td>
</tr>
<tr>
<td>Gasoline</td>
<td>69,3</td>
</tr>
<tr>
<td>LPG</td>
<td>63,1</td>
</tr>
<tr>
<td>Other petroleum products</td>
<td>73,3</td>
</tr>
</tbody>
</table>

4.2. Décarbonation

4.2.1. Emissions de Gaz à effet de serre

i. Tendance actuelle des émissions de GES et objectifs ETS, ESD, LULUCF et différents secteurs énergétiques

Selon l’inventaire soumis en mars 2019, la Wallonie a émis 35,3 millions de tonnes de CO$_2$-équivalents en 2017, soit 31 % des émissions annuelles de la Belgique (hors secteur forestier). Cet inventaire est élaboré selon les lignes directrices du
GIEC de 2006 et les potentiels de réchauffement global (PRG) applicables pour la période 2013-2020\(^57\).

L’inventaire wallon des émissions de gaz à effet de serre, additionné aux inventaires de la Région flamande et de la Région de Bruxelles-Capitale, forme l’inventaire belge rapporté annuellement par la Belgique dans le cadre du protocole de Kyoto et des engagements européens (Effort Sharing Decision, EC/406/2009).

La figure ci-dessous présente la répartition des émissions totales de GES par type de gaz et entre les principaux secteurs.

![Figure 15 : Répartition des émissions de GES par secteur en Wallonie en 2017 (Source AWAC)](image)

Le CO\(_2\), qui représente 82 % des émissions totales de GES, est surtout émis lors des processus de combustion dans différents secteurs : industrie, transports, chauffage résidentiel et tertiaire, centrales électriques. Le CH\(_4\), qui représente 8% des émissions totales, provient à 78% de l'agriculture, à 10% du secteur des déchets et à 7% des réseaux de distribution de gaz naturel (compresseurs et fuites), le reste provenant de l'ensemble des processus de combustion. Le N\(_2\)O représente 8% des émissions totales et est principalement émis par l'agriculture (81%), l'industrie chimique (4%) et les processus de combustion (9%). Enfin, les gaz fluorés représentent 2% des émissions totales et sont émis lors de la fabrication et l’utilisation de certains produits (réfrigération, mousses isolantes, etc.).

\(^{57}\) PRG applicables : CH\(_4\) = 25 et N\(_2\)O = 298. Les PRG des gaz fluorés sont également revus.
Sur base des dernières estimations disponibles, les émissions anthropiques de GES (hors secteur forestier) en Wallonie en 2017 étaient de 36,9 % inférieures à celles de 1990.

Les émissions ESD de 2013-2016 sont inférieures à la trajectoire de réduction.

<table>
<thead>
<tr>
<th>Wallonie (kt CO₂-éq.)</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectif ESD</td>
<td>26 029</td>
<td>25 624</td>
<td>25 219</td>
<td>24 813</td>
</tr>
<tr>
<td>Emissions ESD</td>
<td>24 283</td>
<td>23 207</td>
<td>23 889</td>
<td>24 146</td>
</tr>
<tr>
<td>Solde ESD (surplus)</td>
<td>1 747</td>
<td>2 417</td>
<td>1 329</td>
<td>667</td>
</tr>
</tbody>
</table>

Dans la mesure où la trajectoire est plus contraignante d’année en année, le respect de l’objectif pour les années suivantes n’est pas garanti, mais les surplus générés durant les premières années (6,2 millions d’unités en pour 2013-2016) pourront être utilisés en vue d’assurer la conformité.
Figure 17: Evolution des émissions totales de GES en Wallonie, secteurs ETS et ESD inclus (Source : AwAC)

L’évolution globale est le résultat de tendances très contrastées selon les secteurs. Les secteurs de l’industrie et de la production d’électricité sont à l’origine d’une réduction des émissions totales de respectivement 28% et 7%, mais la croissance des émissions liées au transport a par contre provoqué une augmentation des émissions globales de 3 %.

Les principaux facteurs des évolutions sectorielles sont les suivants :

- Energie : passage du charbon au gaz naturel ou au bois, fermeture de cokeries
- Industrie : fermeture dans la sidérurgie, usage accru du gaz ou de combustibles de substitution. Accords de branche et ETS. La valeur ajoutée augmente malgré cette diminution.
- Résidentiel et tertiaire : augmentation du parc, consommation électrique accrue, passage limité au gaz naturel, isolation, climat plus doux.
- Transports : augmentation du nombre de voitures, de leur cylindrée et des km parcourus.
- Déchets : récupération et valorisation du biogaz dans les CET
Inventaires GES : Emissions directes et indirectes

Les inventaires nationaux/régionaux ne prennent en compte que les émissions directes. Ces inventaires GES qui sont rapportés à la Commission Européenne et à la Convention Cadre des Nations Unies sur les Changements Climatiques (CCNUCC) sont tous basés sur les mêmes méthodologies. Tous les pays sont soumis aux mêmes règles de rapportage, ainsi qu'à un processus annuel de vérification des inventaires. Ces processus permettent d’assurer non seulement la transparence, mais aussi la comparabilité des résultats obtenus. Le fait de ne comptabiliser que les émissions directes au niveau d’un territoire évite également le risque de double comptage des émissions.

Un bilan carbone, qui prend en compte les émissions indirectes, est particulièrement utile dans le cadre d’une démarche de réduction ou de minimisation des émissions directes et indirectes liées à une activité (entreprise, événement, consommation individuelle), pour analyser selon une approche intégrée l’ensemble des améliorations envisageables. Cependant, la

fixation du périmètre de l’analyse nécessite inévitablement des hypothèses ou des choix méthodologiques. Par exemple, pour une importation de carburant, on pourra comptabiliser les émissions liées au transport de ce carburant, mais aussi à son extraction, ou encore prendre en compte les émissions liées à la construction des infrastructures. Ces aspects méthodologiques rendent parfois difficile la comparaison entre ces bilans. Par contre, le suivi au cours des ans de l’évolution du bilan permettra d’évaluer les progrès réalisés.

Les **approches de type émissions directes ou indirectes sont donc complémentaires, mais ont des finalités différentes.** Enfin, il faut souligner que les émissions directes considérées dans les inventaires nationaux et dans les objectifs de réduction correspondent aux principaux leviers d’action dont disposent les gouvernements en vue de réduire les émissions. Les leviers d’action pour diminuer les émissions liées aux produits importés sont moins nombreux, en particulier à l’échelle régionale : la consommation locale est naturellement encouragée, mais d’autres leviers comme les normes et produits, dont notamment l’étiquetage des produits ou les accords commerciaux dépendent principalement de l’autorité fédérale et non des compétences régionales.

ii. Projections des développements sectoriels avec politiques nationales et européennes existantes et mesures jusqu’à au moins 2030

Les projections présentées se basent notamment sur le travail réalisé par un consultant, ECONOTEC, avec le modèle EPM (modèle technico-économique) au second semestre 2016 afin d’actualiser les projections réalisées début 2015 pour les secteurs de la production d’énergie, industrie, résidentiel et tertiaire. Les projections du secteur transport ont quant à elles été modélisées via l’outil COPERT. Ces projections pourront être évolutives, en fonction du changement de contexte ou l’existence de nouveaux outils61. Le modèle ne permet pas de couvrir toutes les dimensions de l’Energy Union (marché, réseau, etc.) ni d’appréhender tous les impacts (emploi, prix, etc.).

Politiques et mesures prises en compte

Seules les principales mesures générant des investissements sont prises en compte (par exemple, les effets de « soft measures » telles que la communication ne sont pas directement intégrées). Ce choix amène probablement à une

61 Le modèle TIMES (modèle d’optimisation) est notamment en cours de développement en Wallonie.
surestimation des consommations et des émissions mais le scénario de référence obtenu se veut ainsi prudent.

Les politiques et mesures existantes sont intégrées dans le modèle sur base d’analyse de données existantes (bases de données, texte règlementaires, ...).

Lorsque la date de fin d’une mesure est connue, celle-ci est prise en compte (exemple : certificats verts). Dans le cas contraire, la mesure est prolongée linéairement jusqu’en 2030 (exemple : primes).

Emissions de Gaz à Effet de Serre

Le graphique ci-dessous reprend, depuis 2005, l’évolution des émissions de GES de tous les secteurs d’activité et estime l’évolution à politique constante.

![Evolution sectorielle des émissions de gaz à effet de serre selon le scénario de référence (WEM), évolution par pas de 5 ans](image_url)
Sans mesures additionnelles, les émissions de chacun des secteurs resteront globalement stables sur toute la période allant jusqu’à 2030. Cependant quelques augmentations sont envisagées pour les secteurs de la production d’énergie, l’industrie et le transport. En ce qui concerne le secteur de la production d’énergie, ce dernier connait une augmentation de ses émissions en 2025 suite à la fermeture du parc nucléaire et à son remplacement partiel par des centrales au gaz. Pour le secteur industrie, il y a une augmentation entre 2015 et 2020 car il a été estimé que le secteur reviendrait à un niveau d’activité comparable à celui qui existait en 2008 avant la crise. Et il est estimé que le secteur des transports poursuive sa croissance passée.

Dans les paragraphes qui suivent se trouvent les principales évolutions estimées par secteur.

Production d’électricité

Entre 2005 et 2030, les émissions du secteur production d’électricité augmentent de 12% et sont en nette augmentation à partir de 2025, en raison de la fermeture des centrales nucléaires et de leur remplacement partiel par des centrales au gaz.

Industrie

Entre 2005 et 2030, les émissions du secteur industrie diminuent de 39%.

Les émissions de GES du secteur industriel augmentent jusqu’en 2020 et ensuite, restent relativement stables, malgré la croissance économique, des efforts en matière d’efficacité énergétique étant réalisés.
Transport

Entre 2005 et 2030, les émissions du secteur transport augmentent de 11%.
C’est l’évolution du transport routier qui provoque cette augmentation des émissions car les autres types de transports restent stables.

Résidentiel

Entre 2005 et 2030, les émissions du secteur résidentiel diminuent de 30%.
Les émissions par logement liées au chauffage baissent de 15,8% entre 2012 et 2030 sous l’effet de l’amélioration des logements existants et des performances énergétiques des logements neufs.

Tertiaire

Entre 2005 et 2030, les émissions du secteur tertiaire diminuent de 4%.

Agriculture

Entre 2005 et 2030, les émissions du secteur agriculture diminuent de 19%.
Les tendances passées d’évolution du cheptel et d’épandage d’engrais minéraux ont été poursuivies en, concertation avec les services économiques agricoles pour estimer le scénario tendanciel.

Déchets

Entre 2005 et 2030, les émissions du secteur déchets diminuent de 69%.

Autres

Entre 2005 et 2030, les émissions des autres secteurs autres diminuent de 37%.
Cela concerne principalement les émissions de gaz fluorés qui diminuent progressivement pour respecter les législations en vigueur. Sont également comprises les émissions fugitives et celles dues au secteur militaire qui restent constantes dans les estimations réalisées pour le scénario de référence.

4.2.2. Energie renouvelable

i. *Part actuelle d’énergie renouvelable dans la consommation finale brute, par secteurs (chaud/froid/électricité et transport), par technologies dans ces secteurs*

Les « sources d’énergie renouvelables » sont des sources d’énergie non fossiles, renouvelables utilisées aussi bien pour la production d’électricité que pour la
production de chaleur et le transport62. Les plus connues, car elles font partie de notre paysage quotidien sont l’éolien, le solaire et le bois. Mais en font également partie le biogaz et les biocarburants par exemple.

Les sources renouvelables disponibles en Wallonie peuvent être regroupées en trois catégories :

\begin{tabular}{|c|c|c|}
\hline
\textbf{Source électricité (E-SER)} & \textbf{Source chaleur (C-SER)} & \textbf{Transport (T-SER)} \\
\hline
- Hydraulique \hspace{1cm} - Solaire thermique & - Eolien \hspace{1cm} - Pompes à chaleur & - Biodiesel \\
- Solaire PV \hspace{1cm} - Géothermie & - Biogaz & - Bioéthanol \\
- Biogaz \hspace{1cm} - Biocombustible liquide & - Biocombustible liquide & - Électricité SER \\
- Biomasse solide \hspace{1cm} - Biomasse solide & - Déchets organiques & - \\
- Déchets organiques & & - \\
\hline
\end{tabular}

Dans le cadre des engagements de la Belgique vis à vis de l’Union Européenne en matière d’énergie renouvelable, 13\% en 2020, une répartition entre les régions et le fédéral a été décidée en décembre 2015, la Wallonie s’est ainsi vu attribuer un objectif de 14 850 GWh de production à partir de sources d’énergie renouvelable en 2020.

Cependant, dans un arrêté, la Wallonie a décidé d’aller plus loin et d’atteindre 15 600 GWh de production à partir de sources d’énergie renouvelable en 2020.

Cet objectif est calculé en prenant en compte la production d’électricité renouvelable, la production de chaleur renouvelable et la consommation de biocarburants dans le transport. Le dénominateur tient compte de la consommation finale d’énergie, y compris les pertes du réseau et la consommation propre des centrales électriques ou de chaleur. Les figures suivantes montrent l’évolution de la part du renouvelable en Wallonie et l’objectif qui est fixé pour 2020. On constate que la part de l’électricité renouvelable est en croissance (moins de 1\% du total avant 2007, 3,9\% en 2017), que le transport renouvelable a subi une baisse en 2015, qui s’est rattrapée en 2016 et 2017, et enfin que la plus grosse contribution provient de la chaleur renouvelable avec 7,2\%.

62 Pour une définition complète, se référer à la directive 2009/28/CE
Avec 12,6% atteint en 2017, la Wallonie dépasse les objectifs du Burden Sharing assignés au niveau belge, soit 15 341 GWh sur les 14 850 GWh prévus.

ii. Projections indicatives de développement avec politiques existantes et mesures jusque 2030

La part des sources d’énergie renouvelable (SER) passe de 10.74% en 2015 à 12.98% en 2030 dans un scénario à politique inchangée. Le rythme de l’évolution varie selon le secteur et la filière.

63 12.6% en 2017
Concernant la production d’\textit{électricité renouvelable}, le mécanisme des certificats verts est pris en compte jusqu’en 2024. Sous l’influence du mécanisme, la production électrique renouvelable est en croissance jusqu’en 2024, pour se stabiliser ensuite (en l’absence du maintien du mécanisme de soutien des certificats verts après 2024), mis à part pour le petit photovoltaïque.

La production d’électricité renouvelable porte principalement sur l’éolien, la biomasse (par cogénération ou non) et le photovoltaïque.

La production de chaleur renouvelable montre quant à elle une légère croissance de chaque filière. La cogénération est stimulée par le mécanisme des certificats verts tandis que les autres filières sont poussées par les mécanismes de soutien et obligations de performances énergétiques existantes.

Figure 24 : Production de chaleur renouvelable par filière (WEM)

4.3. Dimension Efficacité énergétique

i. Consommation actuelle finale et primaire dans l’économie et par secteur (incluant industrie, résidentiel, service et transport)

Les impacts environnementaux de la production et de l’utilisation d’énergie dépendent des quantités d’énergie consommées, mais aussi du type de ressources employées : primaires ou secondaires, fossiles ou renouvelables.

Les besoins réels en énergie de la Wallonie sont représentés par la consommation intérieure brute d’énergie\(^{64}\) (CIB).

\(^{64}\) Le terme « consommation intérieure brute d’énergie » correspond à la demande totale en énergie d’une zone géographique.
Par rapport au terme plus connu de « consommation finale d’énergie », il faut retenir qu’on ajoute à la consommation finale les pertes liées à la transformation et distribution d’énergie, ainsi que la consommation de combustible des centrales électriques.

Le graphique ci-dessous montre que, de manière globale et depuis 2004, nous consommons moins d’énergie chaque année avec une diminution de 15 % par rapport à 1990. Nous voyons que cette diminution de la consommation se répercute sur la production nucléaire qui passe de 65 TWh en 1990 à 58 TWh en 2017. Cette diminution de la part nucléaire est compensée par l’essor des énergies renouvelables au début des années 2000 qui participe maintenant à hauteur de 12% dans notre consommation intérieure brute.

La Wallonie améliore donc son indépendance énergétique d’année en année.

Figure 25 : Evolution de la consommation intérieure brute par vecteur entre 1990 et 2016

Le graphique montre cependant que 2015 est la première année avec un solde importateur en électricité depuis 1990. Cela signifie qu’en 2015, la Wallonie n’a pas produit plus d’électricité que nécessaire et que, au total, nous avons dû acheter un plus d’électricité à nos voisins que nous ne leur en avons vendu. En 2017, on observe à nouveau un solde exportateur d’électricité en Wallonie pour 6 TWh.

Parallèlement à l’évolution des besoins énergétiques de la Wallonie, l’évolution de la consommation finale permet de détailler les liens entre les secteurs économiques responsables de cette consommation et la consommation par vecteur énergétique.

En effet, on n’utilise pas la même source d’énergie pour se déplacer que pour concevoir des produits industriels par exemple. Une évolution dans la répartition
par secteur d’activité entraîne donc une modification dans la répartition par vecteur énergétique. Le double graphique ci-dessous présente cette perspective :

Figure 26 : Evolution de la consommation finale totale par secteur d’activité et par vecteur énergétique

On remarque dans le deuxième graphique que l’essentiel de la consommation est réparti sur trois secteurs : industrie, transport et bâtiment (obtenue en regroupant tertiaire et logement).

Dans une perspective chronologique, on remarque que si l’industrie continue à être le plus important consommateur énergétique chez nous, elle ne participe plus qu’à hauteur de 35% dans cette consommation finale alors que nous étions à 52% en 1990. Cette diminution est responsable du glissement de la consommation de

65 La consommation finale totale comprend les usages non énergétiques, c’est-à-dire l’énergie utilisée comme matière première dans le processus de fabrication
combustibles solides (premier graphique) qui passe de 24% en 1990 à seulement 4% en 2017. En effet, ces combustibles étaient majoritairement utilisés dans la sidérurgie. En outre, vu les émissions importantes de CO₂ associées à ce type de combustibles, c’est à la suppression et/ou remplacement de ces sources d’énergie que ce sont attelées prioritairement les industries qui les utilisaient.

Nous constatons ensuite que le transport, qui ne participait qu’à hauteur de 19% à la consommation énergétique en 1990, consomme actuellement 29% de l’énergie utilisée chez nous.

Cette donnée se retrouve sur le premier graphique qui montre que la part des carburants pétroliers passe de 18% à 27% entre 1990 et 2017, suivant en cela l’évolution de la part du secteur.

Le 2 % de différence en 2017 sont couverts par les biocarburants et l’électricité renouvelable du secteur transport.

Les combustibles pétroliers ont suivi, dans une moindre mesure, la tendance des combustibles solides. Ce sont le gaz naturel et l’électricité qui ont partiellement remplacés ces deux familles de combustibles.

La progression de l’électricité est plus importante que celle du gaz naturel dans le résidentiel alors que, pour de nombreux usages, le gaz naturel semble être un combustible de substitution plus approprié. Ceci est notamment lié au caractère plus diffus de l’habitat dans plusieurs zones de Wallonie, qui limite le développement du réseau de distribution de gaz naturel.

L’ensemble de ces données souligne aussi la dépendance de notre région aux produits pétroliers que nous utilisons encore à hauteur de 42% comme source d’énergie.

ii. Potentiel actuel pour l’application de la cogénération “high efficiency” et des réseaux de chaleur et froid

A. Estimation des économies d’énergie primaire à réaliser

Sur base des potentiels économiques définis, l’énergie primaire est calculée à l’aide d’un coefficient de conversion de 2,5 pour l’électricité et de 1 pour les autres vecteurs énergétiques.

Au niveau de la cogénération, cela donne une économie d’énergie primaire d’environ 15% des potentiels techniques, soit 4.155 GWh.

Pour l’énergie fatale, l’économie d’énergie primaire est de 93,12 GWh.

Au total, l’estimation d’économie d’énergie primaire s’élève à environ 4.288 GWh.
Ce chiffre pourrait être augmenté si l’on tenait compte de paramètres économiques plus favorables correspondant à un environnement propice aux investissements de cogénération et de valorisation de chaleur fatale haute température en production d’électricité.

La demande de chaleur et de froid pourrait être satisfaite par la cogénération à haut rendement, y compris par la micro-cogénération domestique, et par des réseaux de chaleur et de froid.

La demande de chaleur qui pourrait être satisfaite par la cogénération à haut rendement, y compris par la micro-cogénération domestique et par des réseaux de chaleur est reprise sous le vocable chaleur substituable. Ce sont les usages à température comprise entre 50°C et 250°C.

Les besoins en chaleur substituable sont identifiés par secteur (logement, tertiaire et industrie) et par usage dans le tableau ci-après (ECS = eau chaude sanitaire).

Tableau 21 Besoins chaleur

Les besoins globaux de chaleur (65,5 TWh) représentent 76% de la consommation énergétique totale des 3 secteurs, ce qui montre l’importance de ces besoins dans le bilan énergétique. Plus de la moitié (52,2%) de la consommation finale d’énergie des trois secteurs sont des besoins de chaleur substituable, soit un total de 45 TWh. La contribution majeure dans ce total est apportée par les besoins du logement (26,0 TWh, 58%), ensuite par l’industrie (11,3 TWh, 25%) et enfin par le tertiaire (7,7 TWh, 17%).

Les besoins en froid sont de 20,8 GWh pour le logement, 935 GWh pour le tertiaire (dont 540 seraient substituables, c’est-à-dire des usages qui peuvent être assurés par des réseaux de froid) et de 830 GWh pour l’industrie (dont 128 seraient substituables).

Selon les informations disponibles au moment de l’étude, il n’existe pas en Wallonie d’installation susceptible de produire du froid récupérable dans un réseau de distribution ou pouvant être autoconsommée sur site. Les seuls secteurs qui posséderaient un potentiel dans le froid sont la chimie et l’industrie alimentaire.
B. Estimation des potentiels

❖ Potentiel de la cogénération

Potentiel technique de la cogénération

Afin d’évaluer le potentiel technique de la cogénération, la méthodologie de rapportage issue des exigences de la directive 2004/8 concernant la promotion de la cogénération a été mise en œuvre sur la base des données les plus récentes disponibles. Il en ressort que la puissance thermique potentielle est de 529 MWth, dont 76% dans le secteur industriel, la production thermique correspondante est estimée à 3 172 GWh. La puissance électrique potentielle est de 428 MWe, avec 81% dans le secteur industriel, la production électrique correspondante est de 2 621 GWh.

Figure 27 : Potentiel cogénération

Potentiel économique de la cogénération

Comme l’illustre parfaitement le graphique suivant, le potentiel économique, avec des contraintes de temps de retour de 2 ans pour l’industrie et de 5 ans pour le tertiaire, sans soutien des certificats verts, reste très faible par rapport au potentiel technique. Il se situe en effet autour des 15%.
Il convient de rappeler que le potentiel de la cogénération est tributaire de divers facteurs exogènes ou économiques qui peuvent diriger les investissements comme, par exemple, le prix de la tonne de CO2, le mécanisme de soutien ou le choix du temps de retour.
Potentiel des chaleurs fatales industrielles

Potentiel technique des chaleurs fatales industrielles

Le potentiel technique de valorisation des énergies fatales a été évalué pour des températures de chauffe inférieures et supérieures à 100°C. Il s’élève à 2.627,6 GWh.

<table>
<thead>
<tr>
<th>Branche Industrielle</th>
<th>>100°C</th>
<th>≤100°C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDÉRURGIE</td>
<td>140,0</td>
<td>0,0</td>
<td>140,0</td>
</tr>
<tr>
<td>NON FERREUX</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>CHIMIE</td>
<td>128,5</td>
<td>50,0</td>
<td>178,5</td>
</tr>
<tr>
<td>MINERAUX NON METALLIQUES</td>
<td>1 148,7</td>
<td>0,0</td>
<td>1 148,7</td>
</tr>
<tr>
<td>ALIMENTATION</td>
<td>7,8</td>
<td>187,7</td>
<td>195,5</td>
</tr>
<tr>
<td>TEXTILE</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>PAPIER</td>
<td>0,0</td>
<td>22,1</td>
<td>22,1</td>
</tr>
<tr>
<td>FABRICATIONS METALLIQUES</td>
<td>3,1</td>
<td>0,0</td>
<td>3,1</td>
</tr>
<tr>
<td>AUTRES INDUSTRIES</td>
<td>0,0</td>
<td>16,5</td>
<td>16,5</td>
</tr>
<tr>
<td>TOTAL INDUSTRIE</td>
<td>2 081,5</td>
<td>296,4</td>
<td>2 377,9</td>
</tr>
</tbody>
</table>

Tableau 22 : Potentiel chaleur fatale

Potentiel économique des chaleurs fatales industrielles

- **Haute température**

Sur base de la méthode et des hypothèses détaillées dans le rapport de l’étude, la figure ci-dessous montre le TRS en fonction du potentiel chaleur à haute température cumulé et du potentiel technique à haute température total.

Avec une contrainte de TRS inférieur ou égal à 2 ans, le potentiel économique est nul. Actuellement, les temps de retour sont très longs pour valoriser la chaleur fatale. Sans aide et en fonction des prix actuels des énergies, la filière ORC (Organic Rankine Cycle) n’est pas rentable.
- **Basse température**

Le potentiel économique total se chiffre à 93,12 GWh/an et équivaut à 31% du potentiel technique total des secteurs étudiés.

La figure ci-dessous illustre les résultats pour chaque secteur et montre la partie du potentiel technique qui serait économiquement viable.

![Figure 30 : Potentiel technique chaleur fatale](image)

Potentiel d'efficacité énergétique des infrastructures de réseaux de chaleur et de froid

La Wallonie possède 46 réseaux de chaleur, mais aucun réseau de froid. Les propriétaires de ces réseaux sont à 67% publics et ruraux car issus principalement du Plan bois-énergie et Développement rural mis en œuvre pour soutenir le développement des communes rurales. Parmi ces réseaux, 42 sont alimentés à partir de biomasse, 2 à partir de gaz naturel, 1 à partir de géothermie profonde et 1 à partir d'énergie fatale. Ces 46 réseaux produisent annuellement 402 GWh et l'énergie distribuée est de 190 GWh. Leur longueur cumulée est de 69,55 km avec plus de 90% des réseaux qui ont une longueur inférieure à 500 m.

Potentiel technique

L'estimation du potentiel technique des réseaux de chaleur est basée sur une approche bottom-up en partant de situations favorables au développement d'un réseau de chaleur pour estimer un potentiel qualitatif. En effet, au moment de l'étude les données sont disponibles au niveau du territoire d’une commune et elles ne permettent pas d’extrapoler les situations favorables au niveau d'un quartier ou d’une rue par exemple.
Ces données détaillées de besoins en chaleur sont progressivement collectées grâce à la législation PEB, pour les logements neufs ou faisant l’objet d’une rénovation avec permis, et via la certification énergétique des logements. De même, la prochaine certification énergétique des bâtiments non résidentiels permettra de récolter avec un niveau de détail important les besoins en chaleur et en froid du tertiaire.

Potentiel économique

Les réseaux de chaleur présentent un potentiel de développement pour la valorisation des chaleurs fatales et des énergies renouvelables. Les nouveaux réseaux de chaleur doivent cependant pouvoir s’adapter à un changement d’environnement (disparition de la source de chaleur fatale, extension, densification), via un fonctionnement en étoile, à débit variable, avec possibilité d’ajout de puissance sur le réseau, ...

Il est nécessaire de disposer d’un besoin de chaleur minimum pour envisager un réseau de chaleur. Etant donné les performances énergétiques des nouvelles unités de logement, il est nécessaire de prévoir des projets mixtes au niveau des affectations (logements+bureaux /crèches /homes /hôpitaux /…).

Les réseaux de chaleur peuvent posséder un intérêt économique à long terme mais la décision d’investissement doit s’envisager au cas par cas, en fonction des résultats d’une étude de faisabilité.

C. **Stratégies, politiques et mesures qui peuvent être adoptées jusqu’en 2030 pour réaliser les potentiels**

En Wallonie, les soutiens financiers disponibles cumulables pour la cogénération sont :

- Une aide à l’investissement ;
- Une aide à la production sous forme de certificats verts pour les cogénérations de qualité, c’est-à-dire qui économisent au moins 10% de CO$_2$ par rapport à des filières de référence.
- Une déduction fiscale de l’Etat fédéral.

Pour la valorisation de chaleur fatale et les réseaux de chaleur et de froid, les soutiens wallons cumulables sont :

- Une aide à l’investissement ;
- Une déduction fiscale de l’Etat fédéral.
Ces soutiens financiers seront maintenus dans la mesure du possible, en fonction des priorités budgétaires wallonnes et du respect des règles européennes en matière d'aides d'État, pour garantir aux porteurs de projets une vision à long terme et les aider dans leurs calculs de rentabilité.

Pour faciliter le développement de la cogénération, des réseaux de chaleur et de froid ainsi que la valorisation des chaleurs fatales, la Wallonie propose déjà les actions suivantes :

- Les accords de branche à destination des entreprises les plus intensives en énergie. Ces accords, basés sur un engagement en efficacité énergétique et en réduction des émissions de CO₂ entre 2005 et 2020 amènent les entreprises à réaliser un audit global de leurs installations au travers duquel la valorisation in situ de chaleur fatale et de froid fatal est systématiquement recherchée. La faisabilité d’une cogénération fossile et biomasse est étudiée le cas échéant.
- Un service en énergies renouvelables et en efficience énergétique dont les missions sont :
 - de conseiller le public cible sur les techniques de cogénération, de valorisation d’énergies fatales et de mise en place de réseaux ;
 - d’offrir un conseil personnalisé à tout porteur de projet;
 - de permettre aux responsables d’un même secteur d’échanger sur les bonnes pratiques de valorisation d’énergie fatales ;
 - de mettre à disposition des outils informatifs et de calculs garantissant une réussite des projets ;
 - de former des personnes relais sur ces techniques tant au niveau de la formation de base que de la formation continuée.
- Une obligation d'étude pour les nouvelles installations ou installations à rénojer d’une puissance supérieure à 20 MWth en transposition de l’exigence du paragraphe 5 de l’article 14 de la directive 2012/27.
- La Wallonie prépare la révision de ses systèmes d’agrément des auditeurs en vue d’améliorer leur niveau de qualité et de les formaliser davantage, avant les méthodologies d’audit.
- La Wallonie envisagera après analyse de réduire les barrières empêchant les producteurs d’électricité cogénérée en basse tension d’avoir accès au marché de l’énergie pour la revente des surplus non autoconsommés.
- Une adaptation des rubriques relative aux permis d’environnement est envisagée, afin de favoriser le développement des projets de cogénération par gazéification de biomasse en évitant le classement de ces installations en classe 1, classement qui apparait inapproprié par rapport aux impacts réels de la technologie de gazéification de bois sur l’environnement (voir section 3.1.2.i)
iii. Projections considérant les politiques d’efficacité énergétique existantes, mesures et programmes tels que décrit au point 1.2. pour l’énergie primaire et finale par secteur jusque 2030

La consommation énergétique finale affiche une tendance à la hausse par rapport à 2015 jusqu’en 2030. Cette augmentation est principalement due au transport.

Figure 31 : Evolution de la consommation finale énergétique par secteur

Malgré cette augmentation, la consommation d’énergie primaire diminue à l’horizon 2030, sous l’effet de la fermeture des centrales nucléaires, partiellement remplacées par des centrales TGV et de l’électricité renouvelable et un niveau d’importation relativement important.

iv. Niveaux coût optimum des prescriptions minimum d’énergie, résultant des calculs nationaux, selon art 5 de la Directive 2010/31/EU

Le calcul des niveaux optimaux en fonction des coûts est régi par le cadre méthodologique fixé par la Commission afin de pouvoir comparer les performances des différents États membres en la matière.

Les résultats et les données utilisées pour les calculs doivent être communiqués à la Commission à intervalles réguliers n’excédant pas 5 ans. Ces rapports doivent permettre à la Commission d’évaluer les progrès réalisés par les États membres pour atteindre les niveaux optimaux en fonction des coûts des exigences minimales en matière de performance énergétique des bâtiments.

Le premier rapport (COZEB I) a été transmis en 2013, le second rapport (CO II) en juillet 2018, ces rapports nécessitant une prise d’acte par le Gouvernement.

Conclusions du CO II

Comme spécifié par les guidelines, l’écart exprimé en %, entre les niveaux cost optimum et les exigences en vigueur est calculé pour chaque bâtiment de référence. Cet écart est pondéré en fonction de la représentativité de chacun d’entre eux. La somme de ces écarts pondérés, divisée par le nombre de bâtiments de la catégorie considérée, donne l’écart moyen pondéré entre les exigences et le niveau cost optimum de chaque bâtiment. Il est ensuite vérifié que cet écart moyen pondéré n’est pas inférieur à -15% (les écarts supérieurs à -15% apparaissent en rouge dans les tableaux ci-dessous), c’est-à-dire que nos exigences ne sont pas trop peu ambitieuses. La Commission autorise cependant la fixation d’exigences plus ambitieuses que le niveau cost-optimum.

Bâtiments existants

Isolation des parois

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales existantes</td>
<td>1.5</td>
<td>1.43</td>
<td>-5%</td>
</tr>
<tr>
<td>Immeubles à appartements existants</td>
<td></td>
<td>1.43</td>
<td>-5%</td>
</tr>
<tr>
<td>Bureaux existants</td>
<td></td>
<td>1.47</td>
<td>-2%</td>
</tr>
<tr>
<td>Etablissements scolaires existants</td>
<td></td>
<td>1.43</td>
<td>-5%</td>
</tr>
</tbody>
</table>

Tableau 24 Cost Optimum Fenêtre- Bât. Existants

Le U optimum moyen pondéré des Fenêtres est de l’ordre de 5% plus performant que l’exigence Umax 2017 (1,5 W/m²K), tous segments confondus (PER, PEN). Cette exigence est remarquablement alignée sur le niveau d’amélioration cost optimum (CO) et ne doit pas être renforcée.
Le **U optimum moyen pondéré** des murs est proche de l’exigence Umax 2017 en vigueur (0,24 W/m²K) pour les bâtiments existants, à l’exception des bureaux existants pour lesquels l’écart moyen pondéré est de -33%. Les valeurs optimales obtenues pour les bâtiments de référence sont cependant systématiquement inférieures au niveau d’exigence 2017. Les conclusions sur les niveaux d’exigences pour les bâtiments neufs pour cette paroi pourraient dès lors être également appliquées aux bâtiments existants sujets à rénovation lourde.

Tableau 25 Cost optimum Murs- Bât. Existants

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales existantes</td>
<td></td>
<td>0.22</td>
<td>-33%</td>
</tr>
<tr>
<td>Immeubles à appartements existants</td>
<td></td>
<td>0.22</td>
<td>-11%</td>
</tr>
<tr>
<td>Bureaux existants</td>
<td></td>
<td>0.18</td>
<td>-33%</td>
</tr>
<tr>
<td>Etablissements scolaires existants</td>
<td></td>
<td>0.24</td>
<td>0%</td>
</tr>
</tbody>
</table>

Le **U optimum moyen pondéré** des toits est proche de l’exigence Umax 2017 en vigueur (0,24 W/m²K) pour les bâtiments existants, à l’exception des établissements scolaires existants pour lesquels l’écart moyen pondéré est de -19%. Les valeurs optimales obtenues pour les bâtiments de référence sont cependant systématiquement inférieures au niveau d’exigence 2017. Les conclusions sur les niveaux d’exigences pour les bâtiments neufs pour cette paroi pourraient dès lors être également appliquées aux bâtiments existants sujets à rénovation lourde.

Tableau 26 Cost optimum Toits- Bât. Existants

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales existantes</td>
<td></td>
<td>0.22</td>
<td>-9%</td>
</tr>
<tr>
<td>Immeubles à appartements existants</td>
<td></td>
<td>0.235</td>
<td>-2%</td>
</tr>
<tr>
<td>Bureaux existants</td>
<td></td>
<td>0.22</td>
<td>-10%</td>
</tr>
<tr>
<td>Etablissements scolaires existants</td>
<td></td>
<td>0.2</td>
<td>-19%</td>
</tr>
</tbody>
</table>

Le **U optimum moyen pondéré** des sols est proche de l’exigence Umax 2017 en vigueur (0,24 W/m²K) pour les bâtiments existants, à l’exception des bureaux existants pour lesquels l’écart moyen pondéré est de 0%. Les valeurs optimales obtenues pour les bâtiments de référence sont cependant systématiquement inférieures au niveau d’exigence 2017. Les conclusions sur les niveaux d’exigences pour les bâtiments neufs pour cette paroi pourraient dès lors être également appliquées aux bâtiments existants sujets à rénovation lourde.

Tableau 27 Cost optimum Sols- Bât. Existants

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales existantes</td>
<td></td>
<td>0.23</td>
<td>-7%</td>
</tr>
<tr>
<td>Immeubles à appartements existants</td>
<td></td>
<td>0.42</td>
<td>16%</td>
</tr>
<tr>
<td>Bureaux existants</td>
<td></td>
<td>0.26</td>
<td>6%</td>
</tr>
<tr>
<td>Etablissements scolaires existants</td>
<td></td>
<td>0.24</td>
<td>0%</td>
</tr>
</tbody>
</table>
Le U optimum moyen pondéré des sols est remarquablement proche (ou un peu moins exigeant, pour les bureaux existants et les immeubles à appartements existants) de l’exigence Umax 2017 en vigueur (0,24 W/m²K). Cette exigence est alignée sur le niveau d’amélioration cost optimum et ne doit pas être renforcée.

Bâtiments neufs

Isolation des parois

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales neuves</td>
<td>1,42</td>
<td></td>
<td>-6%</td>
</tr>
<tr>
<td>Immeuble à appartements neuf</td>
<td>1,43</td>
<td></td>
<td>-5%</td>
</tr>
<tr>
<td>Bureaux neufs</td>
<td>1,43</td>
<td></td>
<td>-5%</td>
</tr>
<tr>
<td>Etablissements scolaires neufs</td>
<td>1,43</td>
<td></td>
<td>-5%</td>
</tr>
</tbody>
</table>

Tableau 28 Cost optimum Fenêtres - Bât. neufs

Le U optimum moyen pondéré des Fenêtres est de l’ordre de 5% plus performant que l’exigence Umax 2017 (1,5 W/m²K), tous segments confondus (PER, PEN). Cette exigence est remarquablement alignée sur le niveau d’amélioration cost optimum et ne doit pas être renforcée.

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales neuves</td>
<td>0.2</td>
<td></td>
<td>-20%</td>
</tr>
<tr>
<td>Immeuble à appartements neuf</td>
<td>0.15</td>
<td></td>
<td>-60%</td>
</tr>
<tr>
<td>Bureaux neufs</td>
<td>0.22</td>
<td></td>
<td>-9%</td>
</tr>
<tr>
<td>Etablissements scolaires neufs</td>
<td>0.2</td>
<td></td>
<td>-20%</td>
</tr>
</tbody>
</table>

Tableau 29 Cost Optimum Murs - Bâts. Neufs

Le U optimum moyen pondéré des murs extérieurs des bâtiments neufs est systématiquement plus performant que l’exigence Umax 2017 (0,24 W/m²K). En fonction des critères et de la nécessité de revoir les niveaux d’exigence par composant à partir de 2021, il se pourrait que le niveau soit renforcé à un niveau correspondant au Cost Optimum ou supérieur.
Le U optimum moyen pondéré des toitures neuves est systématiquement plus performant (de l’ordre de 20% pour les bureaux, écoles et immeubles à appartement, et jusqu’à 36% pour les logements individuels) que l’exigence Umax 2017 en vigueur (0,24 W/m²K). En fonction des critères et de la nécessité de revoir les niveaux d’exigence par composant à partir de 2021, il se pourrait que le niveau soit renforcé à un niveau correspondant au Cost Optimum ou supérieur.

Le U optimum moyen pondéré des sols est égal à l’exigence Umax 2017 en vigueur (0,24 W/m²K). Cette exigence est alignée sur le niveau d’amélioration cost optimum et ne doit pas être renforcée.

Indicateurs de performance globaux

<table>
<thead>
<tr>
<th>Catégorie de bâtiments de référence</th>
<th>Exigence 2017/2021</th>
<th>CO</th>
<th>Ecart moyen pondéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maison unfamiliales neuves</td>
<td></td>
<td></td>
<td>-31%</td>
</tr>
<tr>
<td>Immeuble à appartements neuf</td>
<td></td>
<td>32</td>
<td>-31%</td>
</tr>
<tr>
<td>Bureaux neufs</td>
<td></td>
<td>41</td>
<td>15%</td>
</tr>
<tr>
<td>Etablissements scolaires neufs</td>
<td></td>
<td></td>
<td>-13%</td>
</tr>
</tbody>
</table>

Tableau 30 Cost optimum Toits- Bât. neufs

Tableau 30 Cost optimum Toits- Bât. neufs

Tableau 31 Cost optimum Sols- Bâts. neufs

Tableau 31 Cost optimum Sols- Bâts. neufs

Tableau 32 : Niveau K

Tableau 32 : Niveau K

176
Au niveau des indicateurs de performance globaux (E_{spec}, K et E_w) en vigueur pour les bâtiments résidentiels neufs (HN, IAN), on observe des niveaux optimums moyens pondérés nettement plus performants que les exigences en vigueur en 2017. Signe qu’avec les techniques constructives et les systèmes de production de chaleur disponibles sur le marché actuellement, on peut construire des logements résidentiels globalement plus performants et moins coûteux (sur 30 ans) que ceux répondant strictement aux exigences de performance globales de la règlementation PEB.

Les optimums moyens pondérés E_{spec} 82 kWh/m²a des logements individuels neufs, sont quant à eux remarquablement proches des niveaux d’exigences (E_{spec} 85 kWh/m²a) définis pour 2021.

Au niveau des indicateurs de performance globaux (K et E_w) en vigueur pour les bâtiments non résidentiels neufs, on observe une correspondance quasi parfaite entre le E_w optimum moyen pondéré des bureaux E_w 64 et le niveau d’exigence en vigueur en 2017 pour cette partie fonctionnelle E_w 65.

Pour les écoles neufs, le E_w optimum moyen pondéré E_w 48 est nettement plus performant que l’exigence 2017 et très proche de l’exigence 2021 (E_w 45) définie pour cette partie fonctionnelle. Signe que, dans ce segment, on peut construire plus performant que la règlementation actuelle tout en étant cost optimum. La
récente multiplication d’établissements scolaires construits selon le standard passif ou très basse-énergie confirme cette tendance.

Tant pour les bureaux (K41) que pour les écoles (K32), le K optimum moyen pondéré n’est pas inférieur de plus de 15% des exigences 2017 / 2021 (K35) en matière d’isolation de l’enveloppe.

On peut conclure de ces résultats que les niveaux d’exigence globaux pour les bâtiments neufs en 2017 sont trop peu ambitieux au regard des niveaux cost-optimum actuels. Le renforcement de ces exigences en 2021 pour atteindre les performance Qzen (Quasi zéro énergie) diminuera cet écart et les exigences seront alors cost-optimales par rapport aux résultats actuels.

4.4. Dimension Marché interne de l’énergie

i. Situation actuelle des marchés de l’électricité et du gaz, incluant les prix de l’énergie

Contrairement à ce qui était espéré, la libéralisation du marché, qui a profondément modifié le paysage énergétique, n’a pas directement entraîné une baisse du prix total de la facture. Dans le cas de l’électricité et du gaz naturel, la libéralisation a d’ailleurs coïncidé avec une augmentation forte des prix des énergies fossiles (pétrole et gaz naturel) qui ont pesé sur les prix. Durant les premières années qui ont suivi la libéralisation, le marché régional et national était toujours dominé par l’opérateur historique.

Toutefois, depuis lors, la CWaPE constate, au niveau du marché régional, un accroissement de la concurrence tant au niveau de la fourniture qu’au niveau de la production d’électricité ce qui n’est pas sans conséquence sur l’évolution récente des prix de l’électricité et du gaz naturel.

Résidentiel

La concurrence, et son éventuel impact sur le niveau des prix, ne peut jouer son rôle que sur la partie non réglementée du prix, à savoir le poste énergie. Ce poste représente, en gaz naturel, environ 50 % de la facture d’un client résidentiel, contre environ 30 % en électricité.

66 Rapport CD-17g17-CWaPE-0030 concernant l’analyse des prix de l’électricité et du gaz naturel en Wallonie (clients résidentiels) sur la période de janvier 2007 à juin 2017
En juin 2017, le poste le plus important de la facture d’électricité est la distribution (37,6%) suivi par la composante « Energie » (32,5%).

Electricité

Tableau 35 Evolution Prix Electricité Res

Durant l’année 2016 et par rapport à décembre 2015, les prix ont commencé par diminuer durant le premier semestre avant de connaître une hausse pendant le second semestre, hausse qui s’est poursuivie début 2017.

Durant l’année 2016 et le début de l’année 2017, la facture de gaz des fournisseurs désignés a évolué tantôt à la baisse, tantôt à la hausse au gré des variations de la composante énergie.

Durant l’année 2016, la tendance baissière des prix s’est poursuivie malgré une remontée temporaire des prix durant le troisième trimestre. Cette diminution est en partie liée à l’évolution baissière des prix sur les marchés de gros.

Professionnels

Les activités de production, d’importation et de fourniture d’électricité et de gaz naturel sont soumises à la concurrence.
Les postes dominants dans le prix de l’électricité sont, d’une part, la composante énergie et, d’autre part, le terme de distribution. Pour la classe de consommation E1 (consommation annuelle d’électricité inférieure à 40 MWh), la composante énergie pèse pour 31% dans le prix de l’électricité ; le terme de distribution est quant à lui de l’ordre de 37%.

Si la composante énergie de la facture est en forte baisse, les autres termes de la facture sont en augmentation. Le mécanisme de soutien aux énergies renouvelables pousse la facture finale à la hausse, de manière directe, au travers de la contribution énergie renouvelable mais aussi, de manière indirecte, via la surcharge introduite en 2012 dans le terme de transport pour permettre à ELIA de remplir ses obligations de rachat de certificats verts excédentaires sur le marché wallon.
Attention toutefois, que le décret du 11 décembre 2013 instaure une exonération partielle de la surcharge CV ELIA pour certaines entreprises, principalement reprises dans les classes de consommation E4 à E6.

Après une certaine convergence des prix de l’électricité (prix all-in HTVA) avec nos voisins directs observée en 2009/2010, la tendance semble depuis lors s’inverser et les écarts se font grandissants.

C’est en Allemagne et en Angleterre que les prix pratiqués pour les classes de consommation allant de IA (<20 MWh/an) à ID (de 2 à 20 GWh/an) sont les plus élevés. Les Allemands paient le prix de leur politique énergétique forte et de la transition énergétique avec entre autres l’abandon du nucléaire. Une étude récente réalisée par PWC, même si elle s’intéresse principalement à de plus grands consommateurs que ceux visés par la présente étude, a cependant mis en avant que certains clients industriels « électro intensif » allemands peuvent bénéficier de réductions substantielles de nature à leur donner un avantage concurrentiel par rapport à leurs voisins belges et européens.

A l’inverse des Allemands et des Anglais, les Français et les Néerlandais bénéficient des tarifs les moins élevés. Quant aux prix pratiqués en Wallonie, ils se situent entre ces deux extrêmes.
Gaz

Au cours des douze derniers mois, une diminution des prix (de 0,3% pour G5 jusqu’à 11 % pour G4) liée à la diminution des prix sur le marché de gros est constatée.

Il apparaît que le poste dominant dans le prix du gaz naturel est la composante énergie (y compris transport) et dans une moindre mesure le terme de distribution. Pour la classe de consommation G1 (consommation annuelle de gaz inférieure à 120 MWh), la composante énergie pèse pour 55% dans le prix de gaz ; le terme de distribution est quant à lui de 41 %.

![Figure 33: Comparaison internationale - Prix gaz](image)

Il apparaît que les prix wallons sont compétitifs, souvent parmi les moins chers.

Comme l’a récemment confirmé l’étude réalisée par PWC et même si celle-ci s’intéresse à de plus gros consommateurs, les prix de la commodité en gaz sont proches d’un pays à l’autre. Même s’ils ne représentent qu’une petite partie de la facture finale, les coûts liés au transport, à la distribution et aux taxes sont
déterminants pour les comparaisons internationales. Cette étude met également en avant le fait que les prix pratiqués en Wallonie sont très majoritairement inférieurs à ceux pratiqués chez nos proches voisins.

4.5. Recherche, innovation et compétitivité

i. Situation actuelle du secteur des technologies bas carbone et positionnement sur marché si possible

Au niveau de la Wallonie, il n’existe aucune disposition légale spécifiant des objectifs en matière de recherche dans le secteur énergétique. Les budgets disponibles et les appels sont fréquemment formatés afin de laisser une libre concurrence s’installer entre les différentes finalités de la recherche.

Notons néanmoins trois exceptions avec les appels :

- ERABLE (2011) qui portrait sur les techniques de production énergétique et sur l’efficacité énergétique ;
- RELIABLE (2012) qui portrait sur les réseaux intelligents ;
- ENERGINSERE (2013) qui portait sur le stockage d’énergie.
- Les sollicitations à projets de 2015 et 2016 en vue de financer des projets de recherche dans le cadre de l'Agence Internationale de l'Énergie (AIE) ou pour soutenir des projets d'intérêt régional dans le domaine de l'énergie.

Ces trois appels à projet ont été dotés d’un budget cumulé de 26,5 millions d’€. Ces trois appels s’appuyaient largement sur les dynamiques européennes en matière d’orientation technologique de la recherche.

Plus spécifiquement, les actions de recherche en Wallonie sont soutenues par le Décret du 3 juillet 2008 relatif au soutien de la recherche, du développement et de l’innovation en Wallonie et de ses arrêtés d’application. Ces dispositions prévoient le cadre général du soutien à la recherche et définissent les schémas de valorisation au niveau de la Wallonie, celle-ci étant primordiale pour l’obtention de crédits de recherche. Tout support de la recherche se fait via des mécanismes prévus dans le décret. A cet effet, un budget annuel global de +/-340 millions € (2016) est réservé au budget de la Région pour les différents types de soutien (subvention, cofinancement ou avances récupérables).

L’articulation avec les programmes de recherche européens se fait, d’une part, au Département des Programmes de Recherche du SPW Recherche dont la Direction des Programmes fédéraux et internationaux gère des programmes cofinancés par l’Europe (ERA-NET, ERA-NET+, ...). D’autre part, la promotion des appels « Horizon 2020 » est assurée par le « National Contact Point » (NCP) pour la Wallonie dont la mission est gérée conventionnellement par l’Union wallonne des Entreprises.

De même, elle a participé à l’appel « Urban Europe » et au JTI « Hydrogen-Fuel Cell ».

Les clusters TWEED (Technologie Wallonne Energie - Environnement et Développement durable), Cap Construction et Eco-Construction rassemblent les acteurs dans leurs thématiques pour la promotion de l’innovation et du développement économique du secteur.
ii. **Niveau actuel de dépenses publiques et privées dans la recherche et l’innovation dans les technologies bas carbone, nombre de brevets, nombre de chercheurs**

Les dépenses publiques, inférieures à 10 millions € de 1999 à 2006, ont crû jusqu’à près de 60 millions € en 2012, pour se stabiliser actuellement entre 35 et 40 millions €.

La plus grande part est dévolue à l’efficience énergétique qui représente environ les 2/3 du total depuis 2012. Tous les secteurs de l’efficience énergétique sont concernés (industrie, résidentiel, transport, autres).

Les universités, hautes écoles et organismes de recherche comptent environ 250 chercheurs ETP. Le budget de recherche des acteurs privés est difficile à évaluer. Il devrait tourner autour de 200 millions € par an.

Les politiques et mesures existantes sont issues du décret du 3 juillet 2008 relatif au soutien de la recherche, du développement et de l’innovation en Wallonie, dans le cadre duquel sont organisés des appels à projets thématiques ou des aides « guichet » ou financement bottom up de recherches présentées par les entreprises. Cette action permet de maintenir le budget wallon recherche,

67 Évolution des dépenses publiques en matière de recherche, innovation et compétitivité (source : recueil de données effectué pour l’IEA « Energy RD&D Budget/Expenditure Statistics
innovation et compétitivité énergie à environ 43 millions € par an (moyenne 2012-2017).

iii. Description des subventions pour le secteur de l’énergie, y compris pour les combustibles fossiles

La quantification des subsides alloués aux énergies fossiles fait l’objet de nombreuses discussions et méthodologies. Deux types de subventions sont à considérer pour la Belgique :

- Le financement direct aux énergies fossiles
- Les abattements de taxe

Les subventions aux énergies fossiles sont relativement limitées à l’échelle régionale. Les aides aux chaudières gaz à condensation pour les logements ont récemment été supprimées.

Un travail de recensement exhaustif est mené par ailleurs dans le cadre du rapportage des directives ad-hoc (SER, EE et réseau).
5. ANALYSE D’IMPACT DES POLITIQUES ET MESURES PLANIFIEES

5.1 Impact des politiques et mesures prévues, décrites dans la section 3 sur le système énergétique et les émissions de gaz à effet de serre (incluant la comparaison avec les projections avec mesures existantes de la section 4)

i. Projections du système énergétique et émissions de gaz à effet de serre, polluants air avec mesures planifiées

Le scénario WAM68 en Wallonie a été réalisé en tenant compte de l’impact des mesures décrites dans le chapitre 3 de ce document.

A. Emissions de gaz à effet de serre

![Evolution des émissions de GES pour les secteurs non-ETS](image)

Figure 35 : Evolution des émissions de GES non-ETS

68 With additional Measures
Les projections réalisées permettent d’estimer la diminution des émissions de gaz à effet de serre dans les secteurs non-ETS à -37 % par rapport à 2005. Le scénario de référence prévoyait une baisse de 24.5% par rapport à 2005.

Par rapport à 2005, les émissions, dans les secteurs non-ETS, diminuent de 79% dans l’industrie non-ETS (2.700 ktCO₂, en gardant à l’esprit que l’essentiel de cette diminution a déjà eu lieu entre 2005 et 2015), de 48% dans le secteur résidentiel (3.406 ktCO₂), de 52% dans le secteur tertiaire (846 ktCO₂), et de 24.6% dans le secteur du transport (2.289 ktCO₂, sur base d’une hypothèse de 14% de biocarburants tel que fixé par le Gouvernement fédéral). Le secteur de l’agriculture diminue ses émissions de 1.000 ktCO₂, soit 19% par rapport à 2005.

Figure 36 : Evolution sectorielle des émissions de GES non-ETS (WAM)

B. Énergie renouvelable

En intégrant les nouvelles mesures relatives au développement de l’énergie renouvelable, la Wallonie envisage d’atteindre de l’ordre de 27.5 TWh de production d’énergie renouvelable, soit 23,5% de la consommation finale brute estimée à 2030.
Figure 37 : Evolution de la part d’énergie renouvelable en Wallonie

Figure 38 : Evolution des vecteurs 2005-2030-Renouvelable-Wallonie

<table>
<thead>
<tr>
<th>GWh</th>
<th>Réalisé 2015</th>
<th>Réalisé 2016</th>
<th>Objectif 2020</th>
<th>Objectif 2030 WEM69</th>
<th>Objectif 2030 WAM70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricité</td>
<td>4 060</td>
<td>4 463</td>
<td>5 555</td>
<td>5 691</td>
<td>10 081</td>
</tr>
<tr>
<td>Chaleur</td>
<td>8 108</td>
<td>8 706</td>
<td>8 900</td>
<td>9 170</td>
<td>14 233</td>
</tr>
<tr>
<td>Transport*</td>
<td>906</td>
<td>1 596</td>
<td>2 382</td>
<td>2 263</td>
<td>3 187</td>
</tr>
</tbody>
</table>

69 WEM: With Existing Measures
70 WAM: With Additional Measures
<table>
<thead>
<tr>
<th></th>
<th>Réalisé 2015</th>
<th>Réalisé 2016</th>
<th>Objectif 2020</th>
<th>Objectif 2030 WEM</th>
<th>Objectif 2030 WAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation finale renouvelable</td>
<td>13 073</td>
<td>14 765</td>
<td>16 837</td>
<td>17124</td>
<td>27 501</td>
</tr>
<tr>
<td>Consommation finale brute</td>
<td>121 700</td>
<td>124 194</td>
<td>120 770</td>
<td>131 955</td>
<td>117 032</td>
</tr>
<tr>
<td>Part de SER dans la consommation finale</td>
<td>10.74%</td>
<td>11.89%</td>
<td>13.94%</td>
<td>12.98%</td>
<td>23.50%</td>
</tr>
</tbody>
</table>

biocarburants et biogaz uniquement (électricité SER transport prise en compte dans « électricité).

Tableau 37 : Indicateurs énergie renouvelable en Wallonie

Figure 39 : Evolution de l’énergie renouvelable en Wallonie
Électricité renouvelable

La part d’électricité dans la consommation finale brute d’électricité atteint 37%.

Figure 40 : % électricité dans la consommation finale d’électricité

Les filières les plus contributives sont l’éolien onshore et le photovoltaïque, avec respectivement 46% (4.600 GWh) et 33% (3.300 GWh) du total des GWh produits. L’hydraulique reste stable avec 4% de la production. La biomasse cogénérée intervient pour 16% de la production.

Figure 41 : Évolution de la production d’électricité renouvelable par technologie
L’atteinte de ces objectifs nécessite d’augmenter les capacités installées dans chaque filière.

Plus particulièrement, il sera nécessaire d’installer 1.136 MW entre 2020 et 2030 pour l’éolien, et 2.228 MW pour le photovoltaïque.

Figure 42 : Estimation des capacités de production d’électricité renouvelable dans le WAM (MW)
Chaleur renouvelable

La part de chaleur renouvelable dans la consommation de chaleur finale atteint 24.74%.

Figure 43 : % chaleur renouvelable dans la consommation de chaleur

La biomasse, toutes filières confondues, intervient pour 83% de la production de chaleur renouvelable en 2030. On observe également une percée des pompes à chaleur, qui contribue pour 13% de la production de chaleur en 2030 (contre 4% en 2020).

Figure 44 : Evolution de la production de chaleur renouvelable par technologie
Transport renouvelable

La part de renouvelable dans le transport, au sens de la directive SER\(^71\) incluant la partie d’électricité renouvelable, de biocarburant et de biogaz, est estimée à 24% en 2030.

\(^{71}\) En incluant les facteurs correctifs pour l’électricité et les biocarburants
C. Efficacité Énergétique

1. Consommation finale

La consommation finale en 2030, dans le scénario WAM, est estimée à 115 TWh, contre 130 TWh dans le scénario WEM. Par rapport à 2005, la diminution de la consommation finale est estimée à 22%. Les secteurs les plus contributifs sont le secteur résidentiel (-30% p/r à 2005) et industriel (-35% p/r à 2005, pour l’ensemble du secteur industriel (ETS et non-ETS)).

Entre 2020 et 2030, la diminution de la consommation finale est estimée à 2%, tenant compte de l’évolution de la démographie et de la croissance économique. Entre 2005 et 2030, la part des produits pétroliers diminue de 46%, tandis que la part des renouvelables augmente d’un facteur 10.
Résidentiel

Dans le secteur résidentiel, la consommation finale diminue de 11% entre 2020 et 2030, essentiellement en raison des mesures de la stratégie rénovation. On observe une diminution de 30% de la consommation de ce secteur par rapport à 2005, notamment en raison des mesures déjà prises dans ce secteur.

Par rapport à un scénario sans mesures additionnelles (WEM), la diminution est de 13%.
On observe une augmentation de la part de renouvelable de 85% entre 2015 et 2030 dans ce secteur, tandis que l’ensemble des autres vecteurs sont en diminution (notamment -35% pour les produits pétroliers et 23% pour le gaz).

Figure 50 : Consommation finale du secteur résidentiel par vecteur

Tertiaire

Dans le secteur tertiaire, la diminution de la consommation entre 2020 et 2030 est estimée à 5%. Les efforts, notamment dans la stratégie rénovation, portent leurs fruits de manière plus importante sur la période 2030-2040. Entre 2020 et 2040, la diminution de consommation de ce secteur est estimée à 11.6%.

Par rapport au scénario de référence, la diminution estimée est de 12%.
En 2030, la part de renouvelable du secteur tertiaire est 18 fois plus élevée qu’en 2015. La part issue de la vapeur cogénérée augmente de 140%.
Les autres vecteurs sont en recul (-56% pour les produits pétroliers et -43% le gaz).

Figure 51 : Consommation finale du secteur tertiaire

Figure 52 : Consommation finale du secteur tertiaire par vecteur
Transport

La consommation finale du secteur du transport, entre 2020 et 2030, augmente de 1%.

Par rapport au scénario de référence, celle-ci diminue de 19%.

Globalement, entre 2020 et 2030, la consommation finale du secteur routier diminue de 1%. Les autres secteurs augmentent leurs consommations d’énergie finale : +5% pour l’aérien, +10% pour le ferroviaire, +105% pour la navigation intérieure.

Entre 2005 et 2030, une diminution globale de 2% (soit 687 GWh) s’explique par une diminution de 12% de la consommation du secteur routier et de 17% du secteur ferroviaire, tandis que le secteur aérien augmente sa consommation de 152% et le secteur de la navigation de 56%.

Figure 53 : Consommation finale du secteur transport

Entre 2015 et 2030, la consommation finale de produits pétroliers diminue de 32%, tandis que la part du gaz et de l’électricité augmentent, tout comme la part des biocarburants.
Entre 2005 et 2030, la diminution de la consommation finale dans le secteur de l’industrie est estimée à 35%. Après la forte diminution apparue entre 2005 et 2015 suite notamment, mais pas seulement, à la fermeture de plusieurs industries électro-intensives en Wallonie, la reprise dans ce secteur a pour conséquence une augmentation de la consommation finale d’énergie (+1% estimé entre 2015 et 2020).

Tenant compte d’une croissance économique, la consommation finale de l’industrie augmente de 2% entre 2020 et 2030, tous secteurs confondus (ETS et non-ETS). Par rapport au scénario de référence, les mesures prises en compte permettent d’estimer la diminution de consommation à 3%.
Entre 2015 et 2030, la consommation finale de renouvelable, de vapeur cogénérée et d’électricité augmente respectivement de 57%, 27% et de 6%. La part de gaz diminue de 12%, celle des combustibles solides de 17%. La consommation de produits pétroliers connaît par contre une hausse de 30%.

Figure 55 : Consommation finale du secteur industrie

Figure 56 : Consommation finale du secteur industrie par vecteur
2. **Consommation primaire**

La consommation primaire est dépendante du parc de production d’électricité estimé. L’effort repris ici suppose la sortie du nucléaire selon le calendrier prévu à ce jour et une part limitée d’importation wallonne.

![Figure 57 : Consommation d’énergie primaire en Wallonie (GWh)](image)

La consommation d’énergie primaire diminue de 36% par rapport à 2005 et de 15% par rapport à 2015. La consommation primaire de produits pétroliers est en nette diminution. Cette diminution est compensée par une augmentation de la consommation primaire de gaz et de renouvelable. L’importation d’électricité du scenario WAM est par hypothèse considérée relativement limitée (1.600 GWh).

5.2 **Incidences macroéconomiques et, dans la mesure du possible, sanitaires, environnementales et sociales ainsi que sur l’emploi, l’éducation et les qualifications, y compris au regard d’une transition juste et équitable des politiques et mesures planifiées**

Au moment de la rédaction de ce Plan, la Wallonie ne disposait pas d’outil adapté pour évaluer les impacts socio-économiques des différentes mesures du Plan de manière détaillée.

L’analyse reprise ci-dessous se base donc surtout sur une revue de la littérature à l’échelle belge ou européenne. Ces études ne modélisent donc pas finement les
hypothèses liées au Plan wallon mais s’inscrivent généralement dans la logique d’atteinte des objectifs européens

A. Impacts sur la croissance économique

Une étude72 menée à l’échelle belge suggère que les mesures de réduction des émissions n’affectent pas la croissance économique de manière substantielle, et pourraient même mener à une faible augmentation du PIB si des politiques adéquates sont adoptées.

D’après le BFP, les impacts macroéconomiques dépendent en particulier de l'utilisation de recettes publiques potentielles provenant de la mise aux enchères des quotas du secteur ETS, et de la mise en place d'une potentielle taxe carbone pour les secteurs non-ETS73. Les mesures, associées à un recyclage des revenus carbone, pourraient en effet mener à une faible augmentation du PIB. De tels revenus pourraient par exemple être réinvestis dans le développement technologique lié à la transition énergétique, ou encore dans l'infrastructure, notamment pour inciter le recours aux transports publics.

Au niveau sectoriel, il est estimé que les mesures climatiques impactent la valeur ajoutée de manière relativement limitée, de manière légèrement différente selon les secteurs (Note BFP). Les impacts négatifs les plus prononcés se situent dans le secteur de la production d'énergie. Pour tous les autres secteurs, dans un contexte de recyclage des revenus carbone, les impacts estimés sont négligeables ou positifs, les gains les plus prononcés se situant au niveau du secteur de la construction.

Les mesures de lutte contre le changement climatique devraient également permettre d'éviter une série de coûts liés entre autres à la pollution de l'air et ses effets sur la santé, à l'encombrement de la circulation et aux accidents routiers74.

Enfin, notons également que la productivité (par exemple dans les bureaux et les écoles) peut se retrouver affectée de manière positive par les mesures mises en

73 BFP Note du BFP "Macroeconomic impacts of the « 2030 climate and energy framework » in Belgium: preliminary analysis" (2014) et \url{https://www.plan.be/admin/uploaded/201504270958240.WP_1503_10941.pdf}

place au niveau des bâtiments comme l’amélioration de l’isolation, de la ventilation, et de l’éclairage intérieur75.

B. Impacts sur le système énergétique

Le coût du système énergétique est un indicateur qui comptabilise les coûts d’investissements dans les installations et équipements producteurs ou consommateurs d’énergie ainsi que les coûts d’achat d’énergie. La mise en œuvre des mesures devrait s’accompagner d’une faible augmentation de ce coût par rapport à un scénario de type « business-as-usual », résultant de l’augmentation estimée des coûts d’investissements, qui ne serait pas compensée par la diminution estimée des coûts d’achat d’énergie.

C. Incidences sur la compétitivité des entreprises

L’impact des mesures climatiques sur la compétitivité des entreprises est difficile à estimer, car dépendant du contexte international (notamment le prix de l’énergie dans d’autres pays, le prix des technologies à l’étranger, ...) et de la spécificité du tissu économique régional. La Wallonie est attentive, lors de l’établissement de ses politiques climatique, à prendre en compte l’impact potentiel sur la compétitivité, notamment suite à l’augmentation potentielle du coût de l’énergie. Une Analyse du Cycle de Vie environnementale des produits, couplée à une ACV sociale, permettrait le développement d’un label promouvant les produits européens, tout en évitant le dumping social.

D. Incidences sur l'emploi, l'éducation et les compétences

Une étude d’Eurofound\(^76\) indique que la Belgique est le pays européen avec le plus grand impact des mesures climatiques sur l'emploi. Selon les hypothèses retenues par cette étude, un effet net positif est attendu au niveau global, avec des différences sectorielles.

Cependant, d’après une étude de CLIMACT, l'impact global attendu dans le secteur de l'énergie est négatif, suite à la réduction globale de la demande en énergie. Ce résultat tient compte des répercussions sur les industries de production et de raffinage de combustibles fossiles, ainsi que sur le secteur de la production et de la distribution d’électricité. Les investissements pour la production d'énergie renouvelable et en infrastructure énergétique sont quant à eux souvent liés à des secteurs à forte intensité de main-d’œuvre. Dans l’ensemble, les mesures climatiques devraient donc avoir un effet net positif sur l'emploi. Une augmentation du nombre d'emplois est attendue dans le secteur de l'industrie manufacturière directement liée à ou faisant partie de la chaîne d’approvisionnement des énergies renouvelables ou de l'efficacité énergétique, mais surtout dans le secteur tertiaire lié à ces mêmes chaînes d’approvisionnement.

C'est dans le secteur de la construction que le plus grand nombre de nouveaux emplois directs est attendu, aussi la question de l’affectation des travailleurs dans ce secteur mérite une attention particulière. Le transport devrait quant à lui « être affecté de manière asymétrique : la réduction dans la demande de maintenance pour les véhicules privés devrait être compensée par les effets positifs liés par exemple au déploiement des services de transport public » (CLIMACT).

Un inventaire des secteurs d'activité appelés à évoluer d'un point de vue technologique devra être réalisé. De plus, plusieurs points mériteront une attention particulière afin de permettre la mise en pratique d'une transition juste. Plusieurs sources de défauts d'alignement peuvent apparaître\(^77\) (+ Eurofound):

- **raisons temporelles** : pertes et créations d'emploi pourront ne pas survenir au même moment. Au plus rapide se fera le changement, au plus des frictions seront probables, laissant des travailleurs sans emploi et certaines demandes pour des nouvelles compétences insatisfaites ;
- **raisons spatiales** : pertes et créations d'emploi pourront survenir dans des zones éloignées ;

\(^77\) IRENA (2019) Broadening the Policy Framework to Ensure a Just and Inclusive Transition, 5\(^{\text{th}}\) IRENA Policy Day
- **raisons sectorielles** : pertes et créations d'emploi pourront survenir dans des secteurs différents ;
- **raisons d'éducation** : emplois perdus et créés pourront être associés à des compétences différentes.

Un accompagnement sera donc nécessaire entre autres au niveau de l'adaptation des emplois existants, de la formation aux compétences nouvelles, de l'anticipation des besoins de formation dans les secteurs à haute croissance tel que la transition écologique et à haute valeur sociétale (énergie, mobilité, communication, économie circulaire, etc.)

E. Impacts sur les ménages

Bien que l'on s'attende à une augmentation du prix de l'énergie, un ensemble de mesures envisagées dans le Plan devraient permettre de réduire les factures de gaz et d'électricité des ménages, en particulier concernant l'isolation des bâtiments, les changements de vecteur énergétique, l'autoconsommation, et les changements de comportement. Une attention particulière sera portée à la protection des publics précarisés – plus vulnérables – via le prolongement ou le renforcement des aides, actions de sensibilisation, de suivi de la consommation et d'accompagnement. Cette attention devra pouvoir être étendue aux classes moyennes inférieures. L'ensemble des politiques énergétiques feront l'objet d'une attention renforcée pour les citoyens. L'énergie est un bien vital et un droit fondamental dont l'accès doit être garanti à tous.

De même que pour l'électricité et le gaz, une augmentation du prix des carburants fossiles est elle aussi attendue (CLIMACT). Son impact sur les ménages est difficile à estimer. Il dépendra non seulement de l'ampleur de cette augmentation, mais aussi des changements de comportement au niveau individuel, en interaction avec le déploiement et l'attractivité des alternatives à la voiture individuelle, le développement du marché des véhicules à carburants alternatifs et l'évolution du prix de ces carburants. Des mesures de sensibilisation à la mobilité douce et d'encouragement du télétravail sont déjà à l'œuvre en Wallonie. Les mesures reprises dans la vision FAST visent à encourager le transfert modal, y compris en milieu rural et dans les zones péri-urbaines. Elles reprennent en outre l'augmentation de l'offre de déplacement mutualisé et de l'attractivité de la comodalité, ainsi que l'information et l'accompagnement des citoyens au sujet de la mobilité durable.
F. **Impacts sur les inégalités**

En particulier, de nombreux facteurs sont susceptibles d'avoir des répercussions sur les travailleurs, ou d'accroître les inégalités au sein de la société, par exemple :

- l'évolution du marché de l'emploi, qui peut faire face à une série de défauts d'alignement (repris dans la section D. Incidences sur l'emploi, l'éducation et les compétences), affectant le chômage et freinant les reconversions professionnelles ;
- la précarité, qui ne doit pas se voir renforcée par les mesures climatiques. En outre, celles-ci ne doivent pas profiter davantage à la population à haut revenu (par exemple, l'octroi de primes pour l'acquisition d'un véhicule électrique) ;
- les inégalités territoriales, par exemple en termes d'accès aux services de mobilité, ressources et infrastructures énergétiques, entre milieux urbain et rural ;
- la question du genre, notamment en lien avec :
 - l'emploi, les mesures de lutte contre le changement climatique risquant de réduire la part des femmes dans l'emploi ;
 - le risque de pauvreté, légèrement plus élevé pour les femmes que pour les hommes, et celui des familles monoparentales étant quant à lui beaucoup plus élevé, la majorité d'entre elles ayant une femme à leur tête ;
 - la représentation dans les processus relatifs à l'énergie et au climat, les femmes étant actuellement sous-représentées, tandis qu'elles sont généralement plus préoccupées par le climat ;
 - les actions de communication, des différences de perception existant de manière générale entre hommes et femmes au regard de la durabilité, et pouvant affecter les chances de convaincre des actions

78 L’Institut pour l’égalité des femmes et des hommes a conçu un manuel et une checklist à cet effet, en collaboration avec le Réseau des Communicateurs fédéraux
• les rapports Nord/Sud, par exemple en lien avec l'origine des biocarburants : en raison de leur position souvent plus faible dans différents pays du Sud, les femmes sont plus vulnérables à l’accaparement de leurs terres. Ces accaparements et l’arrivée de grandes multinationales sont souvent accompagnées de menaces et de violences à l’encontre de la population locale. La violence sexuelle et les abus envers les filles et les femmes augmentent également dans de tels cas ;
- les inégalités sociales et environnementales à l’étranger résultant des actions prises sur le territoire (dumping social, exposition aux pollutions, …).
C’est pour cela que le Gouvernement s’engage à lutter contre toute forme de discrimination. Il intégrera notamment la dimension de genre dans les politiques de mobilité, d’urbanisme et d’aménagement du territoire, dès l’analyse des projets et jusqu’à leur évaluation.

G. **Incidences sur la santé et le bien-être**

Incidences sur la santé

Les mesures climatiques devraient être associées à la fois à des effets positifs et négatifs en termes de santé publique.

Le changement climatique augmente le risque d’événements tels les inondations, vagues de chaleurs, sécheresses et incendies. Ce sont les personnes socialement, économiquement ou autrement marginalisées qui sont le plus vulnérables aux conséquences de ce type d’événement ; il peut s'agir par exemple de retraités laissés à eux-mêmes ou des travailleurs passant la majorité de leur temps en extérieur, durant une vague de chaleur (Eurofound). Notons également que les personnes à bas revenu seront les plus affectées en cas de baisse des rendements des cultures.

La majeure partie des mesures climatiques vont en faveur d’une amélioration de qualité de l’air (plus de détails sont fournis dans la section suivante), avec des répercussions sur la santé. Le *Rapport sur les incidences environnementales du Plan Air Climat Energie à l’horizon 2030 de la Wallonie* (ci-après "RIE") indique que les polluants présents dans l’air tels que O₃, SO₂, NO₂, NH₃, et les particules fines entraînent tous des effets négatifs sur le système respiratoire et entraînent également des troubles cardiovasculaires. Les particules fines sont particulièrement nocives pour la santé, augmentant le nombre de décès prématurés et formant la problématique considérée au niveau européen comme ayant le plus gros impact sur la santé publique. Les particules fines et ultrafines, capables de pénétrer dans les alvéoles pulmonaires, figurent parmi les plus dangereuses : aucun seuil minimum ne peut être identifié au-dessous duquel les
effets sur la santé peuvent être négligés. Elles sont principalement issues de la production de chaleur domestique (chauffage et eau) par des installations aux combustibles solides (charbon, bois).

Bien qu’une meilleure isolation des bâtiments permette des réductions en termes de consommation énergétique, son impact sur la santé est conditionné par la qualité de l’aération. Les variations de température sont propices au développement de maladies respiratoires et circulatoires. L’isolation des bâtiments peut diminuer le nombre d’hospitalisations pour ces types de maladies. Mais si elle est associée à une circulation insuffisante de l’air, l’augmentation de l’étanchéité peut au contraire mener au développement de moisissures, particulièrement dans les maisons froides et incorrectement ventilées, ou à l’accumulation de polluants à l’intérieur (par exemple rejetés par les matériaux), avec des impacts négatifs sur la santé. La législation PEB fournit des exigences en la matière. En complément, la Stratégie de Rénovation Wallonne devrait s’accompagner de mesures de sensibilisation afin de favoriser le recours aux bonnes pratiques par les citoyens.

Dans le secteur du transport, le RIE note que la promotion de la mobilité douce pourrait avoir des effets bénéfiques sur la condition physique (déplacements à pied, vélo, trottinettes…), améliorant ainsi globalement la santé de ceux qui y recourent.

Du point de vue de la sécurité routière, le transfert modal et la baisse attendue dans les besoins en mobilité devraient réduire le nombre de voitures sur les routes, ce qui devrait réduire globalement le nombre d’accidents de la route. Le RIE note cependant que la pratique du vélo, lorsqu’elle est peu généralisée, entraine une augmentation du risque d’accidents lié à ce mode de déplacement. A ce titre, la Wallonie présente une forte mortalité cycliste par km, à l’échelle européenne. Des mesures seront donc nécessaires afin de développer des infrastructures adaptées aux cyclistes, et augmenter la vigilance des automobilistes.

Enfin, le draguage des voies navigables permettra également une réduction des risques d’inondation, en améliorant les capacités d’écoulement.

http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf, page 1

Holland M. (2008) "The co-benefits to health of a strong EU climate change policy", Clean Air Action Network Europe, Health & Environment Alliance and WWF Europe

Næss-Schmidt H. et al. (2012) "Multiple benefits of investing in energy efficient renovation of buildings", Copenhagen Economics. Copenhagen
Incidences sur le bien-être et la qualité de vie

Les mesures climatiques devraient également montrer des répercussions sur le bien-être et la qualité de vie des citoyens. La vision FAST devrait permettre une réduction du nombre de voitures sur les routes, réduisant ainsi les embouteillages. La Stratégie de Rénovation Wallonne devrait améliorer le confort tant thermique (meilleure stabilité thermique via une régulation plus performante) qu'acoustique (réduction des gènes liées au bruit via des châssis plus performants). Elle devrait aussi favoriser l'accès à un logement salubre, améliorant grandement la qualité de vie et de confort des ménages les plus précarisés, tout en leur permettant d'allouer les économies réalisées sur leurs charges à des besoins de première nécessité.

Certaines mesures peuvent être la source de nuisances sonores. C'est le cas des travaux de rénovation, du développement de nouvelles infrastructures routières ou ferroviaires, et au niveau des aéroports, ainsi que des installations d'éoliennes. Cet aspect devra donc être considéré dans les projets associés. En outre, l'installation de panneaux solaires ou d'éoliennes peut également être source d'inconfort en termes de qualité du cadre vie des citoyens. Cet aspect devra donc lui aussi être pris en compte dans le choix de la position géographique des projets. Dans le cadre de la Stratégie de Rénovation Wallonne, une approche par quartier pourrait par exemple être envisagée et présenterait l'avantage de limiter la durée des nuisances sonores.

H. Incidences environnementales

81 L’Objectif de Développement Durable numéro 15 englobe « la préservation, la restauration et l’exploitation durable des écosystèmes terrestres et des écosystèmes d’eau douce ». Des objectifs liés à la biodiversité sont quant à eux repris dans la Convention sur la Diversité Biologique. Plusieurs buts stratégiques ont été formulés, qui imposent notamment de :
- Gérer les causes sous-jacentes de la perte de diversité biologique en intégrant la diversité biologique dans l’ensemble du gouvernement et de la société ;
- Améliorer l’état de la diversité biologique en sauvegardant les écosystèmes, les espèces et la diversité génétique ;
- Réduire les pressions directes exercées sur la diversité biologique et encourager l’utilisation durable.
Impacts sur la qualité de l’air

Le PNEC, qui met en œuvre la politique climat-énergie, est élaboré en parallèle et synergie avec le Plan air qui renforcera la politique en matière de qualité de l’air en application de la directive 2016/2284 fixant des objectifs nationaux de réduction de certains polluants atmosphériques aux horizons 2020 et 2030 (dite directive NEC). Ces deux plans s’intègrent au sein du PACE wallon. Cette synergie se justifie par le fait que l’énergie et le transport constituent deux secteurs sources majeurs d’émissions de gaz à effet de serre et de polluants atmosphériques. Ces politiques de meilleure gestion de la production et de l’utilisation de l’énergie ainsi que l’amélioration de la gestion des transports et de la mobilité contribuent pour [80 % - 85 %] à la réduction des émissions des principaux polluants visés par la directive NEC. Les objectifs de celle-ci, à l’horizon 2030, ne pourraient être atteints sans la mise en œuvre du PNEC.

Une vision intégrée des politiques climat-énergie et air permet également d’éviter ou limiter les mesures antagonistes ou contre-productives.

Le tableau ci-dessous, extrait du PACE, renseigne sur les projections des émissions des polluants SO₂, NOₓ, COV, PM₂,₅ et NH₃, sur base des mesures du présent plan. En fonction de certaines hypothèses, les engagements de la Wallonie, basés sur les objectifs contraignants 2030 par rapport à 2005 de la directive NEC (National Emission Ceilings), peuvent être respectés.

<table>
<thead>
<tr>
<th>Polluants</th>
<th>Objectif de réduction BE 2030</th>
<th>Objectif de réduction wallon 2030</th>
<th>Plafonds absolus wallons 2030 en kt</th>
<th>Projections 2030 pour la Wallonie en kt</th>
<th>Réduction estimée pour 2030 par rapport à 2005 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>66 %</td>
<td>65 %</td>
<td>15,4</td>
<td>10,76</td>
<td>75,8 %</td>
</tr>
<tr>
<td>NOₓ</td>
<td>59 %</td>
<td>60 %</td>
<td>49,4</td>
<td>41,72 *</td>
<td>66 %</td>
</tr>
<tr>
<td>COV</td>
<td>35 %</td>
<td>31 %</td>
<td>32,1</td>
<td>29,88 *</td>
<td>37 %</td>
</tr>
<tr>
<td>PM₂,₅</td>
<td>39 %</td>
<td>43 %</td>
<td>8,8</td>
<td>8,3</td>
<td>45,4 %</td>
</tr>
<tr>
<td>NH₃</td>
<td>13 %</td>
<td>14 %</td>
<td>27,0</td>
<td>24,23</td>
<td>23 %</td>
</tr>
</tbody>
</table>

Tableau 38 : Synthèse des objectifs de réduction et des projections, pour 2030, en termes absolus et en pourcentages de réduction

* En application de la directive NEC, les activités de gestion des sols et des effluents d’élevage ne sont pas prises en compte pour le calcul de l’objectif et de son respect.

Le Rapport sur les Incidences Environnementales (RIE) indique que les émissions polluantes générées par le transport proviennent essentiellement des gaz d’échappement (NOₓ, particules fines, SOₓ, CO, N₂O) et de l’abrasion des pneus, freins et revêtement de la route (particules fines et métaux lourds). Les mesures visant à réduire la circulation de véhicules polluants ou les émissions des véhicules en circulation auront un impact positif sur la qualité de l’air.

Le présent plan s’accompagne d’un objectif d’accroissement important de la part de biomasse dans la consommation primaire future, tous secteurs confondus. Il y a lieu de se préoccuper de la forte augmentation de l’usage de la biomasse en tant
que source d’énergie renouvelable car le brûlage du bois, principalement pour le chauffage domestique, est la source principale (60 %), en Wallonie comme dans beaucoup de pays, des émissions de particules fines particulièrement nocives pour la santé, des émissions de black carbon ou carbone-suie, qui est un forceur climatique à courte durée de vie et contribue donc au réchauffement climatique, et d’émissions de HAP (hydrocarbures aromatiques polycycliques) à caractère cancérigène.

L’impact de l’augmentation de l’usage de la biomasse pour accroître la part d’énergie renouvelable dans la production d’énergie est donc à cet égard particulièrement négatif.

Les émissions des installations devraient être prises en considération comme une priorité, particulièrement dans le résidentiel et en ce qui concerne les HAP. De manière générale, un cadre devra être proposé afin de limiter les émissions polluantes. Plusieurs recommandations peuvent être formulées : (i) encourager l'utilisation de biomasse en industrie et pour les installations collectives plutôt que pour de petites installations, (ii) privilégier l'usage de pellets (ou alternativement, d'installations à plaquettes ou bûches qui soient performantes en termes de qualité de l'air) et de biogaz, et (iii) diffuser des conseils d'utilisation des chaudières afin de limiter les émissions polluantes. En outre, l’usage de la biomasse sous forme énergétique se fera en cohérence avec les travaux menés par le Gouvernement (stratégie « Biomasse-Energie ») en tenant compte des enjeux cardinaux suivants : durabilité, conflits d’usages, intégration à la feuille de route bioéconomie et respect de la cohérence entre vecteurs.

En termes de qualité de l’air intérieur, l’impact de l’isolation des bâtiments sera conditionné par la qualité de l’aération.

Par contre, la réduction des émissions de méthane (CH₄) constitue une synergie particulièrement porteuse entre les deux plans, puisque le méthane est un important gaz à effet de serre et qu’il est aussi un précurseur d’ozone troposphérique, polluant atmosphérique nocif pour la santé et les écosystèmes. L’impact des réductions de méthane est donc double et tout à fait positif.

Impacts sur la biodiversité

Selon l’IPBES82, nous sommes face à une crise de la biodiversité sans précédent dans l’histoire humaine. Exploitation directe, changement climatique, pollution et introduction d’espèces exotiques envahissantes sont autant de facteurs invoqués.

Mais le changement dans l'exploitation du territoire est sans conteste le facteur le plus impactant en milieux terrestres et eaux douces.

Toute construction (qu'il s'agisse de bâtiments, infrastructures ou parcs de production d'énergie renouvelable) ou tout aménagement (par ex : travaux des voies fluviales) peut entraîner perte ou altération d'habitats, contre lesquelles il apparaît donc crucial de lutter. Les travaux peuvent également perturber la faune en période de nidification ou d'élevage des jeunes, ce qui peut nécessiter une adaptation du planning. A ces risques s'ajoute aussi celui de la dispersion lors des chantiers d'espèces exotiques envahissantes, dont la gestion représente un coût non négligeable.

L'éclairage public est quant à lui source de pollution lumineuse, avec des répercussions sur la faune, le confort et l'observation du ciel nocturne. L'obligation de service public relative à l'éclairage communal devrait se voir complétée par des recommandations en termes d'horaire et de modulation d'éclairage, ou d'orientation du flux lumineux. Un projet de renforcement de l'éclairage sur les RAVeL est également envisagé. Ces chemins étant fortement associés aux espaces verts, le projet devra être étudié au regard des répercussions sur la faune de cette pollution lumineuse.

Une attention particulière devrait également être accordée à trois secteurs au cœur de ce Plan National Energie Climat :

- L'éolien onshore présente des impacts négatifs bien connus sur les chauves-souris et les oiseaux. Que ce soit pour des raisons environnementales, d'intégration paysagère ou d'inconfort acoustique, le développement éolien se retrouve fortement entravé, par de très nombreux recours déposés devant le Conseil d'Etat. Pour favoriser la réussite des projets, une révision du cadre légal ainsi qu'une campagne d'acceptation sociale bien pensée s'avèrent nécessaires.

En amont des projets, une cartographie de zones stratégiques d'implantation, tenant compte des différents facteurs d'exclusion, devrait également être mise à disposition des investisseurs. Dans certains cas, la mise en place de balises visuelles, de système d'effarouchements sonores ou encore l'arrêt des éoliennes en période migratoire pourraient servir à réduire le risque de collisions de la faune,

83 La France et le Grand-Duché de Luxembourg ont développé des ressources à cet effet :
https://www.biodiversiteetbati.fr/Files/Other/Biodiversite-et-chantier.pdf
https://www.youtube.com/watch?v=2kE0y6GnBT8
https://environnement.public.lu/fr/publications/conserv_nature/plantes_exotiques_envahissantes/plantes_exotiques_envahissantes.html

84 Voir par exemple : Les cahiers de BIODIV'2050 : COMPRENDRE n° 6 (2015) "Eclairage du 21ème siècle et biodiversité"

85 https://www.natagora.be/position-sur-les-eoliennes
mais ces actions nécessitent le ciblage de certaines espèces bien particulières et une bonne connaissance de leurs caractéristiques éthologiques et biologiques.

- Les panneaux photovoltaïques ont un impact méconnu de pollution par la lumière polarisée, impactant des insectes aquatiques qui les sélectionnent comme sites de ponte. Ce phénomène peut être presque entièrement éliminé par une conception adaptée.

- Les mesures d'isolation des bâtiments entraînent la disparition de cavités servant de nid ou d'abris à une faune spécifique. Des aménagements simples en faveur de la faune peuvent néanmoins être mis en place lors de la construction ou des rénovations. Des murs et toitures végétalisées (leur impact sur la biodiversité dépendra du choix des espèces), ou encore des projets d'agriculture sur les toits (projet GROOF) peuvent également être envisagés, et présentent également d'autre co-bénéfices, notamment en termes de bien-être. Notons également que certains matériaux de construction ont un impact plus faible que d'autres sur l’environnement, et que leur recours pourrait donc être favorisé.

Problématique de la gestion des ressources minérales

Enfin, le développement des énergies renouvelables induira une demande croissante de minéraux, dont l'exploitation est caractérisée par de forts impacts environnementaux. Il sera donc nécessaire d'une part de favoriser les filières de recyclage, et d'autre part de s'assurer le recours à des ressources extraites et purifiées de la manière la moins néfaste possible et qui garantissent une exploitation juste et respectueuse des droits de l’homme.

88 http://www.biodiversiteetbati.fr/
5.3. Etat des lieux des besoins en investissements

i. Flux d’investissements existants et hypothèses prospectives sur les investissements au regard des politiques et mesures prévues

La Wallonie ne disposant pas à ce jour 89 d’outil intégré pour l’évaluation des besoins en investissements, certains secteurs sont ciblés ci-dessous, sur base des données disponibles.

- La stratégie rénovation long-terme approuvée en 2017 indique que « le besoin d’investissement total sur la période 2017-2050 a été estimé à 63 milliards d’euros pour le résidentiel » 90. Plus finement, à l’horizon 2030, un montant de 18,8 milliards est attendu. Pour la rénovation des bâtiments non résidentiels, des estimations sont en cours 91.

- Les tableaux suivants reprennent les besoins en investissement 92 estimés à l’horizon 2030 pour la production d’électricité et de chaleur renouvelables.

<table>
<thead>
<tr>
<th>Objectif 2030</th>
<th>Coût d’investissement 2030 p/r 2014 (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p/r 2014 (GWh)</td>
<td></td>
</tr>
<tr>
<td>Photovoltaïque</td>
<td>723</td>
</tr>
<tr>
<td>Eolien</td>
<td>1.330</td>
</tr>
<tr>
<td>Hydroélectrique</td>
<td>290</td>
</tr>
</tbody>
</table>

Tableau 39 : Besoins en investissement estimés pour la production d’électricité renouvelable à l’horizon 2030 (Source : modèle TIMES). Le coût ne tient pas compte de l’actualisation

89 La Wallonie est occupée à développer un modèle TIMES d’optimisation économique. Une fois ce modèle opérationnel, il permettra l’évaluation des besoins en investissement pour l’ensemble du système énergétique (dans les limites des données renseignées dans le modèle).

90 Ces chiffres sont en cours de réactualisation pour la prochaine stratégie rénovation long-terme, attendue en mars 2020. Les premières estimations, encore à affiner, tendent vers 80 milliards d’euros pour le résidentiel jusqu’à 2050.

91 Les premières estimations tendent vers entre 38 et 45 milliards d’euros pour les bâtiments non résidentiels jusqu’au 2050.

92 Sans tenir compte de l’actualisation
<table>
<thead>
<tr>
<th>Technologie</th>
<th>Objectif 2030 p/r 2020 (GWh)</th>
<th>Coût d'investissement 2030 p/r 2020 (M€)</th>
<th>Surcoût (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaire thermique</td>
<td>84</td>
<td>160</td>
<td>91</td>
</tr>
<tr>
<td>Pompes à chaleur</td>
<td>1.507</td>
<td>1.140</td>
<td>282</td>
</tr>
<tr>
<td>Géothermie profonde</td>
<td>233</td>
<td>438</td>
<td>97</td>
</tr>
<tr>
<td>Biomasse</td>
<td>2.285</td>
<td>1.003</td>
<td>657</td>
</tr>
<tr>
<td>Cogénération (biomasse)</td>
<td>1.225</td>
<td>441</td>
<td>95</td>
</tr>
</tbody>
</table>

Tableau 40 : Besoins en investissement estimés pour la production de chaleur renouvelable à l’horizon 2030 et surcoût estimé par technologie. Le coût d’investissement ne tient pas compte de l’actualisation. Le surcoût tient compte de l’actualisation, des dépenses d’exploitation et du coût des combustibles (Source : fichier de calcul de 2018 interne à l’administration)

- Le tableau suivant reprend les besoins en investissement estimés à l’horizon 2030 pour les infrastructures énergétiques liées au transport.

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Objectif 2030</th>
<th>Coût d’investissement 2030 p/r 2020 (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations Hydrogène</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Points de rechargement pour véhicules électriques* :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- publics</td>
<td>6.900</td>
<td>105</td>
</tr>
<tr>
<td>- solutions B2B</td>
<td>185.000</td>
<td>830</td>
</tr>
<tr>
<td>Stations LNG</td>
<td>25</td>
<td>89</td>
</tr>
<tr>
<td>Stations CNG</td>
<td>220</td>
<td>79</td>
</tr>
</tbody>
</table>

Tableau 41 : Besoins en investissement estimés pour les infrastructures énergétiques à l’horizon 2030 (Sources : Etude ASSET 2018 « Technology pathways in decarbonisation scenarios », fichier de calcul interne à l’administration). Le coût ne tient pas compte de l’actualisation. (*) Les montants mentionnés ne reprennent pas les coûts additionnels potentiels liés au renforcement de puissance des bornes (~ 1.800-4.000 €/point de rechargement) ou à l’installation de bornes intelligentes.

93 Sans tenir compte de l’actualisation
94 Les données disponibles ne permettent pas d’estimer largement le coût des infrastructures liées au transport.
Le comité stratégique du Pacte National pour les Investissements Stratégiqques (PNIS) relève une série d'obstacles en matière d'investissement95 :

- « Il n’existe actuellement pas en Belgique d’aperçu détaillé et complet des actifs financiers de l'État » ;

- « Aujourd’hui, les règles européennes constituent un frein aux investissements publics belges. En effet, la Belgique doit réduire sa dette publique, trop élevée, et limiter le déficit. Dans ce contexte, il est difficile de consacrer beaucoup de moyens supplémentaires à des investissements » ;

- Le canal des fonds européens n’est « pas pleinement exploité, à cause notamment du nombre particulièrement élevé de possibilités de financement et du manque de connaissance en matière de procédures à suivre ».

Au niveau des partenariats publics-privés (PPP), elle relève un certain nombre d’obstacles :

- « Un niveau d’expertise technique insuffisant des chefs de projet, entraînant souvent des projets mal équilibrés en termes de répartition des risques ou insuffisamment négociables (bancables) » ;

- La complexité des PPP, « à laquelle s’ajoute une absence de procédures spécifiques aux investissements publics, ainsi qu’une lourdeur des procédures administratives et juridiques concernant les plans et autorisations sous-jacents ».

iii. Analyse de l’aide publique ou des ressources supplémentaires nécessaires pour remédier aux lacunes recensées au point ii.

De manière générale, le comité stratégique du PNIS invite à :

- Une **meilleure connaissance du patrimoine de l'État**, par un inventaire complet des actifs publics. Celui-ci « concerne tant le niveau fédéral que celui des Communautés et des Régions et des pouvoirs locaux. Il en va de même pour les entreprises publiques et autres entités juridiques qui en dépendent » ;

- Davantage de **coordination**, au niveau politique et au niveau des experts, « pour plus de vision à long terme et une meilleure gestion des investissements publics ». En outre, le comité stratégique relève que « de nombreux pays ont adopté des dispositifs et des procédures destinés à améliorer la gestion des investissements publics, [mais que] malheureusement, ces pratiques sont trop peu développées en Belgique. Et si de telles procédures existent déjà, c'est de manière fragmentée, par des pouvoirs adjudicateurs spécifiques » ;

- « Examiner comment le **cadre budgétaire européen** peut éventuellement être ajusté et appliqué de manière flexible à la Belgique [pour permettre] un assouplissement temporaire des contraintes pour une entité spécifique faisant face à un pic dans ses dépenses d’investissement, tout en respectant les limites budgétaires européennes » ;

- Profiter de l’**expérience internationale des institutions et agences européennes** pour améliorer la gestion des projets d’investissement ;

La Région veillera à l’utilisation efficiente des fonds, tant régionaux et nationaux qu'européens et privés.
Maximiser la mobilisation des sources de financement au niveau européen

Le comité stratégique du PNIS note que « dans bien des cas, les autorités sous-utilisent les fonds européens, par ignorance et par manque d'accompagnement ». De nombreuses possibilités de financement existent, associées à des procédures spécifiques. Pour une mobilisation efficace des financements européens, une cellule administrative dédiée au support technique et à la coordination devrait par conséquent être établie, « afin de pour faciliter à la fois la rédaction et la soumission des dossiers auprès des instances européennes et de la BEI, et leur suivi ».

Aperçu des possibilités de financement au niveau européen

Le cadre financier pluriannuel de l’Union Européenne pour 2021-2027 met notamment en exergue les politiques de la lutte contre le changement climatique et de transition énergétique. En effet, la Commission a intégré l’action climatique dans tous les grands programmes de dépenses de l’UE, et elle prévoit qu’une part significative des fonds alloués devront contribuer aux objectifs en matière de climat.

Plusieurs instruments financiers et programmes à l'échelle européenne sont destinés à financer, entre autres, les mesures de transition énergétique :

- Les Fonds structurels et d'investissement, incluant :

 - le Fonds européen de développement régional (FEDER), qui devrait, pour la période 2021-2027, soutenir la réalisation de 5 objectifs stratégiques (OS) parmi lesquels celui d’une Europe plus verte et à faibles émissions de carbone par l’encouragement d’une transition énergétique propre et équitable, des investissements verts et bleus, de l’économie circulaire, de l’adaptation au changement climatique et de la prévention des risques (OS2).

 - le Fonds social européen plus (FSE+), visant à améliorer l'emploi et l'éducation, et donc susceptible d'intervenir dans l'encadrement de l'évolution du marché de l'emploi et de la reconversion professionnelle liée à la transition énergétique. D'après la Proposition de Règlement du
Parlement Européen et du Conseil relatif au FSE+96, celui-ci pourrait être mobilisé afin de parvenir « à une Europe plus verte et à faibles émissions de carbone par l’amélioration des systèmes d’éducation et de formation nécessaire à l’adaptation des compétences et des qualifications, le perfectionnement professionnel de tous, y compris de la main-d’œuvre, la création de nouveaux emplois dans les secteurs liés à l’environnement, au climat et à l’énergie et à la bioéconomie ».

- la Politique Agricole Commune, et susceptible d'intervenir par exemple dans le financement de mesures :
 - relatives aux bioénergies;
 - relatives au développement de circuits courts agro-alimentaires en Wallonie;
 - relatives à la prévention des déchets (ex: lutte contre les pertes et le gaspillage alimentaire), leurs tri, recyclage et valorisation;
 - agroenvironnementales et climatiques (MAEC).

- Les Fonds européens sectoriels, dont dépendent les programmes suivants97:

 Budget total : 5,4 milliards EUR pour sept ans (2021-2027)
 Budget énergie : 1 milliard EUR

- \textit{Horizon 2020 / Horizon Europe}, programme de recherche et d’innovation.

 Budget : 97,6 milliards EUR pour sept ans (2021-2027)

97Attention : tous les budgets mentionnés sont les propositions faites par la Commission en mai 2018, ils permettent de donner un ordre de grandeur mais doivent être négociés au cours de la nouvelle législature.
Budget Cluster "Climat Energie Mobilité" : 15 milliards EUR

- **ERA-NETs**, instruments complétant le programme Horizon 2020 pour financer recherche et innovation transnationales\(^98\).

- Le *Connecting Europe Facility*, pour les *Projets d'Intérêt Commun* visant à interconnecter l'Union et ses régions, en termes d'infrastructure énergétique, de transport et digitale.

 Budget de 42,3 milliards EUR pour sept ans (2021-2027)

 - Budget énergie : 8,7 milliards EUR
 - Budget transport : 30,6 milliards EUR
 - Budget digital : 3 milliards EUR

- **InvestEU**, nouvel instrument d'investissement succédant au *Fonds européen pour les investissements stratégiques* ; il fournira une garantie de l'UE qui devra permettre de mobiliser les *fonds publics et privés* en vue d'investissements stratégiques à l'appui des politiques internes de l'UE, notamment pour promouvoir l'efficacité énergétique des bâtiments et leur recours aux énergies renouvelables.

 Budget : 15,2 milliards EUR pour sept ans (2021-2027)

 Objectif : mobiliser plus de 650 milliards EUR d’investissements supplémentaires

- **L'Innovation Fund**, programme de financement succédant au *NER 300*, visant les technologies innovantes en industries intensives en énergie, en matière de production d'énergie renouvelable, de stockage d'énergie, de captage et utilisation ou captage et stockage du dioxyde de carbone.

 Budget envisagé : 10 milliards EUR pour sept ans (2021-2027), en fonction du prix du carbone (le fonds étant en grande partie alimenté par l'ETS)

- Le *European Energy Efficiency Fund (eeef)*, un partenariat publique-privé visant à favoriser des projets d'efficacité énergétique ou d'énergie renouvelable à petite échelle.

- Le *Fonds Européen d'Investissement*, qui vise à soutenir les PME, microentreprises et entreprises sociales, en matière de capital-risque.
- La **Banque Européenne d'Investissement**, qui peut également soutenir des projets en énergie (relatifs aux *énergies renouvelables*, à l'*efficacité énergétique*, à la *compétitivité* de l'approvisionnement ou sa *sécurité*). Le comité stratégique du PNIS note que « en 2017, la BEI et le FEI ont investi en Belgique un total de 1,6 milliard d’euros dans le domaine de l'environnement, des infrastructures, de l'innovation et des PME. À cet égard, la BEI joue un rôle de catalyseur, les moyens qu'elle apporte s'ajoutant à ceux des pouvoirs publics et des financeurs privés. En outre, elle dispose de l'expertise nécessaire dans le domaine de l'évaluation des projets. Elle octroie ainsi un label de qualité aux projets sélectionnés ».

- Les mesures contre le "carbon leakage" de l'UE, visant la compétitivité des entreprises du secteur ETS, et qui seront prolongées jusque 2030.

- **Mobiliser les sources de financement régionales et nationales**

Les plans d'investissements repris dans le tableau qui suit sont à titre exemplatif, ils sont en effet issus essentiellement du PNIS, de compétence fédérale, et du PWI. Ils devront donc être réévalués au regard de la Déclaration de Politique régionale wallonne 2019-2024 et du cadre budgétaire en cours d’adoption.
Aperçu des Plans d’Investissements

▪ **Energie renouvelable**

Au niveau national, environ **19 milliards** EUR devraient être mobilisés pour le mix électrique, sur base d’investissements **privés**. Cette somme servira « à poursuivre le développement des énergies renouvelables, y compris pour les ménages », à « rechercher une solution pour réduire davantage le coût des énergies renouvelables », et à « continuer à garantir la sécurité d’approvisionnement à des prix compétitifs ».

▪ **Transport**

En matière de **mobilité**, un montant de **22 à 27 milliards** EUR est estimé à l’échelle nationale, dont environ 25% pourraient provenir d’investisseurs **privés**. Ce montant viserait l’entretien et le développement de l’infrastructure, des réseaux et services de transports intégrés, la mobilité intelligente, la gestion de la demande de transport, et l’établissement d’un cadre de soutien. Le déploiement des carburants alternatifs devrait être financé à hauteur de **0,3 milliards** EUR, sur base d’investissements **privés**, tant pour le déploiement de stations de recharge CNG et d’électricité, que pour soutenir la recherche dans l’hydrogène et le gaz vert.

A l’échelle wallonne, un budget de **1,38 milliards** EUR est estimé pour la concrétisation des objectifs du Plan Mobilité 2019-2024, le développement de plateformes multimodales (“mobipôles”), la prolongation du métro de Charleroi, la mise à gabarit par dragage des voies navigables, et l’amélioration de la mobilité autour des aéroports.

▪ **Bâtiment**

Au niveau national, environ **17 milliards** EUR devraient viser l’**efficacité énergétique** à travers la rénovation des **bâtiments** publics. La moitié de ce montant pourrait provenir d’investissements **privés**, à travers des partenariats public-privé (PPP) et/ou contrats de performance énergétique (CPE), qui semble convenir particulièrement bien à ce type de projet.

A l’échelle wallonne, un total de **755 millions** EUR sont estimés pour le secteur du logement dans son ensemble (non-limité à la lutte contre le
changer climatique) et pourraient être notamment destinés à l’efficacité énergétique des logements publics et privés. Toujours à l’échelle wallonne, un montant **675 millions EUR** est estimé pour le secteur de l’énergie. Une partie de ce montant sera allouée à l’efficacité énergétique des bâtiments scolaires (le reste servant d’une part au développement de réseaux et compteurs intelligents et d’autre part à la transition énergétique des entreprises).

- **Réseaux et stockage**

Le renforcement des réseaux de transmission et de distribution, de même que le développement des smart grids, pourraient être soutenus au niveau **national** à hauteur d’environ **17 milliards EUR** sur base d’investissements privés.

A l’échelle wallonne, un montant **675 millions EUR** est estimé pour le secteur de l’énergie. Une partie de ce montant pourrait être allouée au développement de réseaux et compteurs intelligents (le reste servant d’une part à l’efficacité énergétique des bâtiments scolaires et d’autre part à la transition énergétique des entreprises).

Au niveau national, environ **5 milliards EUR** devraient servir au développement du **stockage** énergétique, sur base d’investissements privés.

- **Industrie**

A l’échelle wallonne, un montant **675 millions EUR** est estimé pour le secteur de l’énergie. Une partie de ce montant pourrait être allouée à la transition énergétique des entreprises (le reste servant d’une part à l’efficacité énergétique des bâtiments scolaires et d’autre part au développement de réseaux et compteurs intelligents).

- **Agriculture**

En ce qui concerne l’**agriculture**, le Plan Wallon d'Investissement a estimé le financement de l’économie locale à hauteur de **15 millions EUR**, par la mise en place de halls-relais agricoles.
Déchets

Concernant le secteur des *déchets*, **1,2 millions** EUR sont estimés pour financer à l'échelle wallonne le Plan REGAL actuellement en cours (2015-2025), le Programme wallon de lutte contre les pertes et le gaspillage alimentaire.

Le Plan Wallon des déchets-ressources (PWD-R) adopté le 22 mars 2018 précise les financements nécessaires à sa mise en œuvre. Ce plan vise à orienter la Wallonie dans les axes proposés par la Commission européenne concernant le développement de l’économie circulaire.

❖ **Mobiliser les fonds privés**

« Certains parastataux, des associations sectorielles et ASBL ou des particuliers, mais aussi des institutions financières (banques, assurances, fonds de pension et autres fonds de placement) disposent de **réserves financières importantes**, et les partenariats public-privé (PPP) offrent ainsi aux autorités la possibilité de faire des investissements sans alourdir brutalement la dette publique. En outre, l’intérêt des PPP peut se justifier notamment par « l’intérêt prononcé et de l’expertise technique de nombreuses entreprises privées, par exemple, dans les secteurs de la construction et de l’énergie », ainsi que par une « possibilité de déconsolidation budgétaire, en fonction de la structuration précise du partenariat ».

A titre d’exemple, les estimations qui ont été effectuées indiquent que la mise en œuvre des actions envisagées dans le cahier 3 du projet de PWD-R (gestion des déchets ménagers) devraient induire dans le court terme des coûts estimés à ± 5 M€/an pour les pouvoirs publics, ± 18 M€/an pour les entreprises et ± 3 M€/an pour les intercommunales de gestion des déchets, pour un bénéfice moyen annuel total estimé à environ 14 M€/an.
Ceci apparaît comme une priorité dans le cadre de la stratégie de rénovation, pour laquelle plusieurs mesures ont été priorisées afin de développer le cadre juridique et réglementaire des ESCO et des CPE en Wallonie (section 3.2.3).

Ce type de mesures pourrait être élargi pour toucher d'autres secteurs où les PPP ont un rôle à jouer, notamment pour le développement des infrastructures de transport et infrastructures numériques permettant l'émergence de solutions de mobilité intelligente\(^\text{100}\).

Par ailleurs, comme mentionné au chapitre « 3.2.10. Mesures de financement », la Wallonie visera à « développer un régime fiscal qui offre des signaux de prix cohérents avec les objectifs de décarbonation et le principe de pollueur-payeur ». La fiscalité constituera donc un outil pertinent pour inciter les acteurs à changer leurs comportements et à adapter leurs choix d’investissement en faveur d’activités compatibles avec l’objectif de décarbonation de notre économie. Ceci sera fait en tenant en compte la capacité financière des ménages.

\(^{100}\) voir par exemple: ITS.be