

Research activities on organic photovoltaics

at the Center of Innovation and Research in MAterials and Polymers – CIRMAP

University of Mons

Roberto Lazzaroni

Journée scientifique des comices 'Energie solaire' - Namur 23/04/2012

Organic Solar Cells

Active material is much cheaper to produce than Si

Easily deposited as thin films over large (flexible) areas

University of Linz 2004

Power Plastic, Konarka, 2007

Power Conversion Efficiency

Best Research-Cell Efficiencies

April 2012

V_{oc} is set by LUMO(acc) - HOMO(don)

Materials for organic photovoltaics

Conjugated polymers

Poly(p-phenylenevinylene), PPV

Polythiophene, PT

* Thin film deposition from solution (spin coating, inkjet printing,Dr.Blading,...)

* Wide range of chemical substitution 'Molecular engineering' 'Small' molecules

phthalocyanine

- * Deposition by vacuum sublim. into highly-ordered thin films
- * Chemical purity

Research activities on organic photovoltaics at CIRMAP - UMONS

CIRMAP: Center of Innovation and Research in MAterials and Polymers

Four research groups : ~ 100 research staff

Service de Chimie des Matériaux Nouveaux - SCMN: R. Lazzaroni Service des Matériaux Polymères et Composites - SMPC : Ph. Dubois Laboratoire Interfaces et Fluides Complexes - Influx: P. Damman CHimie des Interactions Plasma-Surfaces - ChIPS: R. Snyders

Design and modeling of materials and photophysical processes: SCMN Tailored synthesis of polymer semiconductors: SMPC Thin film morphology and electrical properties : SCMN Microstructured layers for light management: Influx Novel materials for electrodes: ChIPS

In close collaboration with

- Materia Nova (P. Viville et al): device fabrication and testing
- ULB (Y. Geerts), UCL (S. Melinte), ULg (C. Jérôme),...

Efficiency of light conversion

25% of the incoming solar light is harvested for a gap of 2.1 eV

 6×10^{21} 120 AM1.5 conditions **Total photon flux** 5x10²¹ Integrated photon flux 100 **MEH-PPV** 4×10^{21} 80 Photon flux 3×10^{21} 602x10²¹ 40 1x10²¹ 200 400 1200600800 1000 1400 Wavelength (nm)

N.S. Sariciftci, Materialstoday, September 2004

Light harvesting at higher wavelengths is essential

Design de molécules low bandgap : 2^e génération

Calcul des propriétés électroniques et optiques par les méthodes de chimie quantique

Couples donneur-accepteur

Niveaux énergétiques: Donneurs

2TB 2TB EDOT EDOT-TB 2TC 2TC-TB 2TT 2TT-TB T T-TB

Niveaux énergétiques: Accepteurs

L'accepteur TQX présente la LUMO la plus basse

Conclusions

Sélection des meilleurs couples donneur-accepteur

TQX

Controlled synthesis of P3HT via GRIM mechanism

McCullough, R. D. et al. *Acc. Chem. Res.* **2008**, *41*, 1201272-1214. Yokozawa, T. et al. *J. Am. Chem. Soc.* **2005**, 17542-17547.

Tuning the optical and electronic properties by the block copolymer approach

Silole-based conjugated block copolymers

Poly(4,4-dihexyl-4*H*-silolo[3,2:b-4,5:b']dithiophene)-*b*-Poly(3-hexylthiophene) <u>P2</u>

(*) as determined by ¹H-NMR

Silole-based (co)polymers : optical absorption properties

The block copolymer has a broader absorption spectrum

V_{oc} is set by LUMO(acc) - HOMO(don)

Binary donor-acceptor systems for organic PV

All organic PV devices are two-component systems Charge separation takes place at the D-A interface

Electronic structure at the donor/acceptor interface

At 4 Å, there is no big shift of the HOMO and LUMO levels of the donor and the acceptor due to the polarization effect.

with Y. Geerts at al.

Opt: DFT (B3LYP/6-31G(d,p))

Modeling the supramolecular organisation and charge transport properties

with Y. Geerts at al.

Carbon nanotubes as additives to favor charge transport in organic photovoltaic cells

Pyrene-functionalized P3HT to favor CNT dispersion in conjugated polymer matrix

Synthesis of P3HT-pyrene copolymer

Modeling the nanotube/ conjugated polymer interface

P3HT chains interacting with a SWNT

The P3HT fibrils tend to arrange perpendicular to CNT axis

Research activities on organic photovoltaics at CIRMAP - UMONS

CIRMAP: Center of Innovation and Research in MAterials and Polymers

Four research groups : ~ 100 research staff

Service de Chimie des Matériaux Nouveaux - SCMN: R. Lazzaroni Service des Matériaux Polymères et Composites - SMPC : Ph. Dubois Laboratoire Interfaces et Fluides Complexes - Influx: P. Damman CHimie des Interactions Plasma-Surfaces - ChIPS: R. Snyders

Design and modeling of materials and photophysical processes: SCMN Tailored synthesis of polymer semiconductors: SMPC Thin film morphology and electrical properties : SCMN Microstructured layers for light management: Influx Novel materials for electrodes: ChIPS

In close collaboration with

- Materia Nova (P. Viville et al): device fabrication and testing
- ULB (Y. Geerts), UCL (S. Melinte), ULg (C. Jérôme),...